• Title/Summary/Keyword: Treadmill running

Search Result 175, Processing Time 0.026 seconds

The Difference in the Smoothness of the Movement according to Shoe, Velocity, and Slope during Walking (보행시 신발, 속도, 경사도에 따른 동작의 부드러움 차이)

  • Choi J.S.;Tack G.R.;Yi J.H.;Lee B.S.;Chung S.C.;Sohn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.169-170
    • /
    • 2006
  • The purpose of this study was to evaluate the smoothness of the gait pattern according to shoe, walking speed, and slope. Eleven male university students used three types(running shoes, mounting climbing boots, elevated forefoot walking shoes) of shoes at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2.0, 2.11, 2.33m/s) and gradients (0, 3, 6, 10%) on a treadmill. Three-dimensional motion analysis (Motion Analysis Corp, Santa Rosa, CA, USA) was conducted with 4 Falcon high speed cameras. The results showed that elevated forefoot walking shoes had the lowest value of normalized jerk at the heel, which means that elevated forefoot walking shoes had the smoothest walking pattern at the heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass (COM) at most walking speeds, which means that the smoothness of gait pattern at the center of mass is the lowest for the elevated forefoot walking shoes. This movement at the COM might even have a beneficial effect of activating muscles in the back and abdomen more than other shoes.

  • PDF

Effect of Endurance Exercise Training on Free Amino Acid Concentrations in Skeletal Muscles of Rats (지구성 운동훈련이 흰쥐의 하지 골격근 유리아미노산 조성에 미치는 영향)

  • 임현정;송영주;박태선
    • Journal of Nutrition and Health
    • /
    • v.35 no.10
    • /
    • pp.1031-1037
    • /
    • 2002
  • The purpose of present study was to evaluate the effect of endurance exercise training on skeletal muscle free amino acid concentrations, and differences in free amino acid concentration between soleus muscle which consists of mostly slow twitch oxidative fiber and extensor digitorum longus muscle which consists of fast twitch oxidative glycolytic fiber. Sixteen male SD rats (4 weeks old) were randomly devided into two groups, and fed a purified AIN-93M diet with or without aerobic exercise training according to the protocol (running on the treadmill at 25 m/min for 60 min, 5 days a week) for 6 weeks. Exercise-training for 6 weeks significanly reduced the commulative body weight gain (p<0.05) and food efficiency ratio (p<0.01) of rats. The result showing mitochondrial citrate synthase activity of soleus muscle was significantly higher in exercise-trained rats compared to the value for control animals (p<0.01) indicates aerobic exercise-training was successfully accomplished in the trained group. No difference was found in the muscle aminogram pattern between soleus muscle and extensor digitorum longus muscle of control animals. However, free amino acid concentrations of soleus muscle were from 1.2 to 3.9 times of those found in extensor digitorum longus muscle of control rats, depending on an individual amino acid. Intermediate level of endurance exercise training for 6 weeks did not influence concentrations of most of free amino acid in soleus muscle of rats collected at an overnight fasted and rested state. In contrast, isolucine and leucine concentrations in extensor digitorum longus muscle of exercise-trained rats were significantly lower than those for control animals. These results indicate that aerobic energy metabolism had not been efficiently conducted, and thereby the utilization of BCAA for energy substrate was enhanced in fast twitch oxidative glycolytic fibers of extensor digitorum longus muscle of rats followed exercise-training protocol for 6 weeks.

Effects of exercise on AKT/PGC1-α/FOXO3a pathway and muscle atrophy in cisplatin-administered rat skeletal muscle

  • Bae, Jun Hyun;Seo, Dae Yun;Lee, Sang Ho;Shin, Chaeyoung;Jamrasi, Parivash;Han, Jin;Song, Wook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.585-592
    • /
    • 2021
  • Cisplatin has been reported to cause side effects such as muscle wasting in humans and rodents. The physiological mechanisms involved in preventing muscle wasting, such as the regulation of AKT, PGC1-α, and autophagy-related factor FOXO3a by MuRF 1 and Atrogin-1, remain unclear following different types of exercise and in various skeletal muscle types. Eight-week-old male Wistar rats (n = 34) were assigned to one of four groups: control (CON, n = 6), cisplatin injection (1 mg/kg) without exercise (CC, n = 8), cisplatin (1 mg/kg) + resistance exercise (CRE, n = 9) group, and cisplatin (1 mg/kg) + aerobic exercise (CAE, n = 11). The CRE group performed progressive ladder exercise (starting with 10% of body weight on a 1-m ladder with 2-cm-interval grids, at 85°) for 8 weeks. The CAE group exercised by treadmill running (20 m/min for 60 min daily, 4 times/week) for 8 weeks. Compared with the CC group, the levels of the autophagy-related factors BNIP3, Beclin 1, LC3-II/I ratio, p62, and FOXO3a in the gastrocnemius and soleus muscles were significantly decreased in the CRE and CAE groups. The CRE and CAE groups further showed significantly decreased MuRF 1 and Atrogin-1 levels and increased phosphorylation of AKT, FOXO3a, and PGC1-α. These results suggest that both ladder and aerobic exercise directly affected muscle wasting by modulating the AKT/PGC1-α/FOXO3a signaling pathways regardless of the skeletal muscle type.

Effects of Aerobic Exercise and Chrysin Supplementation on Macrophage Infiltration and Lipolysis Genes of High-Fat Diet Mice (고지방식이 동물모델에서 크리신 섭취와 유산소 운동이 대식세포 침윤과 지방분해 유전자들에 미치는 영향)

  • Choi, Do-Yourl;Lee, Young-Ran
    • Journal of Digital Convergence
    • /
    • v.17 no.5
    • /
    • pp.399-405
    • /
    • 2019
  • This study was investigated the effect of aerobic exercise and chrysin supplementation on macrophage infiltration and lipolysis in high-fat diet mice. To accomplish the purpose of this study, C57BL/6 mice were fed high fat diet(60% fat diet) during experimental period. The animals were divided into 4 groups; NC (normal diet control, n=5), HC (high fat diet control, n=5), Hch(high fat diet with chrysin, n=5), and HME (high fat diet with aerobic exercise training, n=5). Exercise training was performed for 16 weeks on a treadmill running. As a result, macrophage marker, F480 and CD11c were significantly decreased in HME comparison with HD and Hch. Also, M2 macrophage marker CD11c, and lipolysis marker PRDM were significantly increased in HME compared with HC and Hch These findings suggest that regular aerobic exercise has beneficial effects to inhibit macrophage infiltration in high fat diet mice.

Effects of 3 mg·kg-1 Caffeine Ingestion during Exercise on Fluid-Electrolyte Balance and Tympanic temperature changes in the Heat (고온 환경에서 3 mg·kg-1의 카페인 섭취가 운동 시 체액, 전해질 균형 및 외이온의 변화에 미치는 영향)

  • Kim, Tae-Wook;Park, Bong-Sup
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.1
    • /
    • pp.75-81
    • /
    • 2009
  • This study aims to find out the effect of ingestion of 3 mg·kg-1 caffeine on fluid-electrolyte balance and Tty change during exercise under heat environment of 30~32℃ (40-50% humidity). Five trained males who routinely trained for approximately 60 min·d-1, 3-6 d·wk-1 (age; 28.20±3.56yrs, height; 174.56±5.46 cm, body mass; 76.13±9.02 kg, body fat(%); 14.24±3.99, VO2max; 54.00±4.30 mL·kg-1·min-1, exercise career; 4.20±1.95yrs) performed 40min of treadmill running in heat chamber. The study was a double-blind, randomized, crossover design. Body mass change following exercise was higher for the PLAC (Placebo) and CAFF (Caffeine) in comparison to the CON (Control), there was no significant difference between the CAFF, PLAC, CON (p= .997). The Usg not significant differences (p= .731) and Osmurine not significant differences between the CAFF, PLAC, CON (p= .901). There also were not significant between the CAFF, PLAC, CON for [Na+]urine and [K+]urine (p= .928, p= .469). In the case of Tty, although the increase rate of Tty was the highest for the CAFF on exercise early, exercise the second half in comparison to the CON and PLAC, there was not significant interaction effect between the CAFF, PLAC, and CON of Tty (p= .067), In conclusion, it was confirmed that the 3 mg·kg-1 caffeine ingestion prior to exercising in heat environment does not impart negative effect on body fluid, electrolyte balance and changes in Tty.

Influence of high fat and different types of carbohydrate diet on energy metabolism in growing mice

  • Chung, Nana;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.23 no.3
    • /
    • pp.1-12
    • /
    • 2019
  • [Purpose] The purpose of this study was to determine whether different types of carbohydrate diets with or without exercise changes energy metabolism at rest and during exercise. [Methods] To minimize differences in food and energy intake between experimental groups, mice were pairfed. After 1 week of adaptation, 40 male ICR mice (6 weeks old) were randomly divided into four groups: Sta. (high fat + high starch), Scu. (high fat + high sucrose), StaEX. (high fat + high starch + exercise), and SucEX. (high fat + high sucrose + exercise). StaEX. and ScuEX. groups underwent training by running on a treadmill five times a week. After 10 weeks of training, energy metabolism was measured for 24 h and during a 1 h exercise period. [Results] The final body weight showed no significant difference between the groups. However, the weight of abdominal tissues (epididymal, perirenal, and mesenteric adipose tissue) in training groups was markedly decreased following 10 weeks of training. Results of all energy metabolism (24 h at rest and during 1 h of exercise) showed no significant interactions between diet and exercise. A brief summary of the results of the energy metabolism is that the metabolism related indicators over 24 h were more affected by the dietary pattern than the exercise but during the 1 h of exercise, training had more effect on energy metabolism than diet. [Conclusion] Our findings confirm that: (a) the type of carbohydrates included in the diet influence the metabolic responses over 24 h, (b) training had more effect on energy metabolism than diet during 1 h of exercise, (c) both results; abdominal adipose tissue weight and fat oxidation during exercise are suggestive for a beneficial effect of moderate physical activity on weight maintenance.

Exercise alleviates cisplatin-induced toxicity in the hippocampus of mice by inhibiting neuroinflammation and improving synaptic plasticity

  • Se Hwan Park;Jeong Rim Ko;Jin Han
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.145-152
    • /
    • 2024
  • Chemotherapy-induced cognitive impairment is recognized as the most typical symptom in patients with cancer that occurs during and following the chemotherapy treatment. Recently many studies focused on pharmaceutical strategies to control the chemotherapy side effects, however it is far from satisfactory. There may be a need for more effective treatment options. The aim of this study was to investigate the protective effect of exercise on cisplatin-induced neurotoxicity. Eight-week-old C57BL6 mice were separated into three group: normal control (CON, n = 8); cisplatin injection control (Cis-CON, n = 8); cisplatin with aerobic exercise (Cis-EXE, n = 8). Cisplatin was administered intraperitoneally at a dose of 3.5 mg/kg/day. The Cis-EXE group exercise by treadmill running (14-16 m/min for 45 min daily, 3 times/week) for 12 weeks. Compared to the CON group, the cisplatin injection groups showed significant decrease in body weight and food intake, indicating successful induction of cisplatin toxicity. The Cis-CON group showed significantly increased levels of pro-inflammatory cytokines including IL-6, IL-1β, and TNF-α in the hippocampus, while the Cis-EXE group was significantly decreased in the expression of IL-6, IL-1β, and TNF-α. In addition, compared to the CON group, the levels of synapse-related proteins including synapsin-1 and -2 were significantly reduced in the Cis-CON group, and there was a significant difference between the Cis-CON and Cis-EXE groups. Antioxidant and apoptosis factors were significantly improved in the Cis-EXE group compared with the Cis-CON group. This study suggest that exercise could be meaningful approach to prevent or improve cisplatin-induced cognitive impairment.

Effects of the Exercise Training on Aging Heart in Rat I. Long Term Endurance Exercise (운동훈련이 흰쥐 노화심근에 미치는 영향 I. 장기간 지구력 운동 훈련)

  • 박원학;이상선;이용덕
    • Biomedical Science Letters
    • /
    • v.2 no.1
    • /
    • pp.71-90
    • /
    • 1996
  • There is considerable current interest in the effect of regular vigorous exercise and in particular endurance-running as a possible measure in improving myocardial function. Some data indicate that the aging heart may actually suffer from vigorous endurance exercise. On the contrary appropriate exercise in aged animals improves myocardial function and aerobic energy metabolism. So far there is relatively little data to indicate that endurance exercise is in fact beneficial in improving myocardial function or damaging to heart of aged animals. The present investigation aimed to study the possible effect of a long range treadmill training program on the heart in aging rats. Male rats aged 3, 10, and 20 months were divided at random into a control (sedentary) and an exercise group. The training group was exercised for 5 days a week on an automated treadmill for 20minutes at 18m/min over a period of 5 months. The exercise regimen of our experiments did not cause any significant changes in the tissues and ultrastructural as com-pared with sedentary age-matched control. Tissues and ultrastructures of myocardial cells in trained group aged 8 months are intact and well organized as well as sedentary control group. Age associated tissue and ultrastructural changes of trained group aged 15 months included : an increase in transformed mitochondria, vacuoles, lysosomes, lipid droplets and early lipofuscin. But the trained heart did not show significant difference in tissue and ultrastructural properties from those of sedentary controls. Endurance-trained group aged 25 months showed significant qualitative tissue and ultrastructural difference as compared with age-matched controls. In addition to those found in 25 months control group, focal necrosis, myofibril fraying, hypercontraction band, seperation of intercalated discs, degenerating nucleus and infiltration of collagenous fiber into myocyte were noted in trained 25 months group. The stereological examination of the mi-crographs disclosed no significant difference in the myoflbril, mitochondrion, sarcotubule and in-terstitium volume density and surface density of mitochondrial cristae and numerical density of mitochondria between trained and control group aged 8 and 15 months. In the trained 25 months group, significant increase in volume density of interstitium, lipofucsin granule were shown as compared to untrained age-matched control. On the other hand, significant decrease in mitochondrion volume density was shown. The myofibril volume density did not differ between trained and control group although trained group showed slight increase. From the data obtained a reduced mitochondria/myofibrils ratio was found in trained rat heart aged 25 months and there was no difference between trained and control rat aged 15 months. But a slight but not significant increase was found in the trained group aged 8 months as compared with same age control group. Such increase in the ratio in young animals is considered to be of great importance to cardiac pumping and adaptability. Whereas such adaptations don't seem to occur in aged heart muscle. This study proposed that repeated endurance exercise do not cause any significant qualitative and quantitative ultrastructural change of heart muscle in young(3months) and adult (10months) suggesting that the heart is able to adapt to the exercise. On the contrary, the repeated endurance exercise stress may actually induce degenerative changes in the aged heart muscle(20months).

  • PDF

BASIC STUDIES ON THE PHYSICAL FITNESS OF KOREAN SCHOOL BOYS AND GIRLS (한국(韓國) 어린이 및 청소년(靑少年)의 체력(體力)에 관(關)한 기초연구(基礎硏究))

  • Park, H.K.;Paik, K.S.;Yoo, M.J.;Min, H.S.;Chung, T.S.;Oh, S.B.;Lim, M.J.;Hong, C.K.
    • The Korean Journal of Physiology
    • /
    • v.2 no.2
    • /
    • pp.101-135
    • /
    • 1968
  • As physical fitness measured was muscle strength (hand grips, leg extention, back lift, and arm pull and thrust), skinfold thickness (5 different sites), circulatory function (resting heart rate and blood pressure), speed (kinesiological analysis during 100m sprint, record, maximal and final speed), motor function (50 meter dash, ball throwing, standing broad jump, and pull-ups), maximal aerobic power (maximum oxygen intake by field running method), muscle power (leg and arm by inertia ergometer), and general endurance (maximum endurance running time on the treadmill at the speed of 5 MPH and grade of 15.5%) of 1131 Korean children (boys 572, girls 559) aged of 6 to 17 years, who were randomly sampled from 24 primary, middle and high schools at the two districts of Seoul and KyungKi. The results are summarized as follows: 1) The status (height and weight) of the children was almost same as that of the previously reported Korean and Japanese children of same ages. 2) Muscle strength was a gained linearly with geting age in the boys and girls but there was a little improvement in girls aged of 13 years or more. 3) The mean skin fold thickness was increased linearly with geting ages in both sexes, but the girls from 12 to 17 years of age were increased rapidly, and maximum value was 17mm, while boys was 7.0 mm. 4) In the circulatory function, the resting heart rate was decreased, but the blood pressure was increased with ages in both sexes within the normal limits. 5) The maximum and final speed during 100 meter sprint increases with age in boys but girls who are 12 years old or older, were not improved any mere. The patterns of running were same in both sexes, and maximum speed reached at about 30 meters from starting line. 6) The motor function was increased with age in both sexes, but there was no improvement in 12 years of age or older girls. More over records of all functions except standing broad jump was less than those of Japanese in the same age, respectively. 7) The maximum oxygen intake (MOI) was increased considerably with ages and maximum values were 2.93 L/min (boys) and 2.09 L/min (girls) at the age of 17years. This result was almost same as that of the Japanese and Easter Island population, but the value was lower than that of Europe. The average of the maximum oxygen intake per kg body weight per minute from 9 to 17 years of age were around 53 ml in the boys and 42 ml in the girls. 8) Muscle power was increased linearly with ages in boys while there was relatively a little increment in girls. The maximum values of leg muscle in boys and girls at the 17 years of age were 0.168 and 0.088 horse power, respectively. 9) The maximum endurance running time was increased considerably from the age of 9 in boys, while there was no improvement in girls. The maximum values were 6.0 min and 1.8 min, respectively.

  • PDF

The Effects of 8-week Ketone Body Supplementation on Endurance Exercise Performance and Autophagy in the Skeletal Muscle of Mice (8주 케톤체 투여가 마우스 지구성 운동수행능력과 골격근의 자가포식에 미치는 영향)

  • Jeong-sun Ju;Min-joo Park;Dal-woo Lee;Dong-won Lee
    • Journal of Life Science
    • /
    • v.33 no.3
    • /
    • pp.242-251
    • /
    • 2023
  • The purpose of this study was to investigate the effects of 8-week β-hydroxybutyrate (β-HB) administration with and without endurance exercise training on endurance exercise performance and skeletal muscle protein synthesis and degradation using a mouse model. Forty-eight male wild-type ICR mice (8 weeks old) were randomly divided into four groups: sedentary control (Sed+Con), (Sed+Con), sedentary β-HB (Sed+β-HB), exercise control (Exe+Con), and exercise β-HB (Exe+β-HB). β-HB was dissolved in PBS (150 mg/ml) and injected subcutaneously daily (250 mg/kg) for 8 weeks. Mice performed 5 days/week of a 20 min treadmill running exercise for 8 weeks. The running exercise was carried out at a speed of 10 m/min at a 10° incline for 5 min, and then the speed was increased by 1 m/min for every 1 min of the remaining 15 min. Following 8 weeks of treatments, visceral fat mass and skeletal muscle mass, blood parameters, and the markers for autophagy and protein synthesis were analyzed. The data were analyzed with one-way ANOVA (p<0.05) using the SPSS 21 program. Eight weeks of Exe+β-HB treatment significantly lowered blood lactate levels compared with the other three groups (Sed+Con, Sed+β-HB, and Exe+β-HB) Exe+β-HB) (p<0.05). Eight weeks of Exe+β-HB significantly increased maximal running time (time to exhaustion) compared with the Sed+Con and Exe+Con groups (p<0.05). Eight weeks of β-HB administration significantly decreased autophagy flux and autophagy-related proteins in the skeletal muscle of mice (p<0.05). Conversely, the combined treatment of β-HB and endurance exercise training increased protein synthesis (mTOR signaling and translation) (p<0.05). The 8-week β-HB treatment and endurance exercise training had synergistic effects on the increase in endurance performance, increase in protein synthesis, and decrease in protein degradation in the skeletal muscle of mice.