• Title/Summary/Keyword: Treadmill Running

Search Result 175, Processing Time 0.026 seconds

Differential Effects of Two Period Genes on the Physiology and Proteomic Profiles of Mouse Anterior Tibialis Muscles

  • Bae, Kiho;Lee, Kisoo;Seo, Younguk;Lee, Haesang;Kim, Dongyong;Choi, Inho
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.275-284
    • /
    • 2006
  • The molecular components that generate and maintain circadian rhythms of physiology and behavior in mammals are present both in the brain (suprachiasmatic nucleus; SCN) and in peripheral tissues. Examination of mice with targeted disruptions of either mPer1 or mPer2 has shown that these two genes have key roles in the SCN circadian clock. Here we show that loss of the clock gene mPer2 affects forced locomotor performance in mice without altering muscle contractility. A proteomic analysis revealed that the anterior tibialis muscles of the mPer2 knockout mice had higher levels of glycolytic enzymes such as triose phosphate isomerase and enolase than those of either the wild type or mPer1 knockout mice. In addition, the level of expression of HSP90 in the mPer2 mutant mice was also significantly higher than in wildtype mice. These results suggest that the reduced locomotor endurance of the mPer2 knockout mice reflects a greater dependence on anaerobic metabolism under stress conditions, and that the two canonical clock genes, mPer1 and mPer2, play distinct roles in the physiology of skeletal muscle.

Regular Exercise-training Affects Serum Lipid and Carnitine Profiles in Some College Students

  • Cha, Youn-Soo;Jung, Bok-Mi;Kim, Hyeung-Rak;Ahn, Chang-Bum;Lim, Sang-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.1
    • /
    • pp.71-76
    • /
    • 1998
  • This study investigated the effect of regular exercise on serum lipid profiles and carnitine levels in college students. Daily nutrient intake, anthropometry , serum lipid, and carnitine profiles in serum and urine were evaluated prior to beginning the study and after 35 days of treadmill running for 30 minutes per day. The results obtained were summarized as follows : 1) Concentrations of total lipid and Triglyceride in serum were decreased by regular exercise in female subjects but unaffected in males. 2) Serum LDL-cholesterol was significantly decreased, but total cholesterol and HDL-cholesterol in serum were not affected in both male and female subjects. 3) nonesterified carnitinem, acid-insoluble acylcarnitine, and total carnitine levels in serum were not affected, but acid-soluble acylcarnitine level was increased by regular exercise in both subjects. 4) Urinary excretionof the acid-soluble acylcarnitine level was increased by regular exercise -training. These results suggest that regular exercise -training has different effects on serum lipid oxidation via carnitine metabolism in this condition.

  • PDF

Step Count Detection Algorithm and Activity Monitoring System Using a Accelerometer (가속도 센서를 이용한 보행 횟수 검출 알고리즘과 활동량 모니터링 시스템)

  • Kim, Yun-Kyung;Lho, Hyung-Suk;Cho, We-Duke
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.127-137
    • /
    • 2011
  • We have developed a wearable device that can convert sensor data into real-time step counts and activity levels. Sensor data on gait were acquired using a triaxial accelerometer. A test was performed according to a test protocol for different walking speeds, e.g., slow walking, walking, fast walking, slow running, running, and fast running. Each test was carried out for 36 min on a treadmill with the participant wearing a portable gas analyzer (K4B2), an Actical device, and the device developed in this study. The signal vector magnitude (SVM) was used to process the X, Y, and Z values output by the triaxial accelerometer into one representative value. In addition, for accurate step-count detection, we used three algorithms: an heuristic algorithm (HA), the adaptive threshold algorithm (ATA), and the adaptive locking period algorithm (ALPA). A regression equation estimating the energy expenditure (EE) was derived by using data from the accelerometer and information on the participants. The recognition rate of our algorithm was 97.34%, and the performance of the activity conversion algorithm was better than that of the Actical device by 1.61%.

A Study on the Estimation Accuracy of Energy Expenditure by Different Attaching Position of Accelerometer (가속도계의 부착위치에 따른 에너지 소비량의 예측 정확도에 관한 연구)

  • Kang, Dong-Won;Choi, Jin-Seung;Mun, Kyung-Ryoul;Bang, Yun-Hwa;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.179-186
    • /
    • 2009
  • This works studied to compare gas analyzer with accelerometer and the estimation of energy expenditure based on different attaching position of tri-axial accelerometer such as waist and top of the foot Based on the fact that oxygen intake increases more radically linearly during walking more than 8.0km/hr. 9 male subjects performed walking and running on the treadmill with speed of $1.5{\sim}8.5km$/hr and $4.5{\sim}13.0km$/hr, respectively. Commercially available Nike + iPod Sports kit was used to compare energy expenditure with sensor module attached to their foot. Actual energy expenditure was determined by a continuous direct gas analyzer and two multiple regression equations of walking and running mode for different attaching position were developed. Results showed that estimation accuracy of energy expenditure using waist mounted accelerometer was higher than that of the top of the foot and Nike + iPod Sports kit. Results of energy expenditure based on waist and top of the foot showed that the crossover state of energy expenditure occurred at 7.5km/hr. But Nike + iPod Sports kit could not find intersection of energy expenditure in all nine subjects. Therefore the sensor module attached to the waist and separate multi regression equation by walking and running mode was the best to estimate more accurate prediction.

Impact of concurrent inspiratory muscle and aerobic exercise training on pulmonary function and cardiopulmonary responses (흡기근육 훈련과 유산소운동의 동시적용이 심폐반응과 폐기능에 미치는 영향)

  • Jung, H.J.;Lee, D.T.
    • Exercise Science
    • /
    • v.21 no.3
    • /
    • pp.373-384
    • /
    • 2012
  • The effects of inspiratory muscle training in conjunction with aerobic exercise on inspiratory muscle strength, pulmonary function, and maximal oxygen uptake(VO2max) were examined. Twenty four healthy collegiate men were divided into three groups; respiratory muscle training group(RTG; n=8), running exercise group(REG; n=8), and both respiratory muscle training and running group(BTG; n=8). Their pulmonary function, maximal inspiratory pressures(PImax), and VO2max were assessed before and after intervention. RTG underwent inspiratory muscle training(IMT) with load set to 50 % of PImax, 30 times per session, twice a day, 4 days a week REG ran on a treadmill at 70-75 % of VO2max for 30 min a day, 4 days a week. BTG participated both IMT and the running exercise. Participant's anthropometric parameters and pulmonary function were not changed. VO2max increased by 6.1±3.3 %, 5.9±6.6 %, and 10.0±8.3 % in RTG, REG, and BTG, respectively(p< .05), and PImax also increased by 21.7±14.3 %, 19.7±12.0 %, and 27.0±12.1 % in RTG, REG, and BTG, respectively, but no group differences were found. Based on the study, although statistically insignificant, BTG showed the biggest increase of VO2max and PImax indicating a possible synergic effect of inspiratory muscle training and aerobic exercise on respiratory responses.

Effects of Dietary Supplementation of Taurine, Carnitine or Glutamine on Endurance Exercise Performance and Fatigue Parameters in Athletes (타우린, 카르니틴 또는 글루타민 섭취가 운동선수의 지구력운동 수행능력 및 혈중 피로요소에 미치는 영향)

  • 이해미;백일영;박태선
    • Journal of Nutrition and Health
    • /
    • v.36 no.7
    • /
    • pp.711-719
    • /
    • 2003
  • The effects of taurine, carnitine or glutamine supplementation on endurance exercise performance along with related fatigue factors were evaluated in male college students in the Department of Physical Education, who's maximal oxygen consumption rates (VO$_2$max) were equivalent to those of endurance athletes. Twenty four subjects were randomly divided into 4 groups (n=6), and given placebo, taurine (4 g/day), carnitine (4 g/day), or glutamine (4 g/day) tablets for 2 weeks. Subjects could run 6.9 min or 9.0 min longer until exhausted on a treadmill at the intensity of 75% VO$_2$max following taurine or camitine supplementation for 2 weeks, respectively, compared to the value measured prior to each supplementation. Glutamine or placebo supplementation did not improve the endurance exercise performance based on the running time until exhausted on a treadmill. Serum lactate concentrations measured 1 hr after the initiation of the endurance exercise, as well as at all-out state tended to be decreased by taurine, carnitine, or glutamine supplementation, and were significantly lowered (43% decrease) by carnitine supplementation (p < 0.05). Taurine supplementation significantly reduced the serum inorganic phosphorus concentration measured at all-out state (14% decrease, p < 0.05), while carnitine supplementation significantly lowered the resting state serum inorganic phosphorus level (20% decrease, p < 0.05). Taurine (32% reduction) or carnitine (23% reduction) supplementation significantly decreased serum ammonia concentration measured at all-out state (p < 0.05). From these results, 4 g/day of taurine or carnitine supplementation appears to improve the endurance exercise performance and related human fatigue factors.

Regulatory Effects of Exercise and Dietary Intervention in Mitogen Activated Protein Kinase Signaling Pathways in Rats

  • Lee, Jong-Sam;Kwon, Young-Woo;Lee, Jang-Kyu;Park, Jeong-Bae;Kim, Chang-Hwan;Kim, Hyo-Sik;Kim, Chang-Keun
    • Nutritional Sciences
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • As a central component of a novel protein kinase cascade, the activation of the mitogen-activated protein (MAP) kinase cascade has attracted considerable attention. We sought to determine the effect of exercise and diet on the activation of the extracellular-signal regulated protein kinase (ERK) 1/2 and the p38 MAP kinase pathways in rat soleus muscle. Forty-eight Sprague-Dawley rats were assigned to one of two dietary conditions: high-carbohydrate (CHO) or high-fat (FAT). Animals having each dietary condition were further divided into one of three subgroups: a sedentary control group that did not exercise (NT), a group that performed 8 weeks of treadmill running and was sacrificed 48 h after their final treadmill run (CE), and a group that was sacrificed immediately after their final routine exercise training (AE). A high-fat diet did not have any significant effect on phosphorylated and total forms of ERK 1/2 or p38 MAP kinase. In chronically trained muscle that was taken 48 h after the last training, phosphorylated ERK 1/2 significantly increased only in the FAT but not in the CHO groups. In the case of total ERK 1/2, it increased significantly for both groups. In contrast, both phosphorylated and total forms of p38 MAP kinase decreased markedly compared to sedentary muscle. In muscle that was taken immediately after a last bout of exercise, phosphorylated ERK 1/2 increased in both groups but statistical significance was seen only in the CHO group. Total ERK 1/2 in acutely stimulated muscle increased only in the CHO-AE group even though the degree was much lower than the phosphorylated status. Muscle that was taken immediately after the routine training increased in phosphorylation status of p38 MAP kinase for both dietary conditions. However, statistical significance was seen only in the CHO group owing to a large variation with FAT. In conclusion, a high-fat diet per se did not have any notable effect versus a high-carbohydrate diet on MAP kinase pathways. However, when diet (either CHO or FAT) was combined with exercise and/or training, there was differentiated protein expression in MAP kinase pathways. This indicates MAP kinase pathways have diverse control mechanisms in slow-twitch fibers.

Accuracy of Accelerometer for the Prediction of Energy Expenditure and Activity Intensity in Athletic Elementary School Children During Selected Activities (초등학교 운동선수를 대상으로 대표 신체활동의 에너지 소비량 및 활동 강도 추정을 위한 가속도계의 정확도 검증)

  • Choi, Su-Ji;An, Hae-Sun;Lee, Mo-Ran;Lee, Jung-Sook;Kim, Eun-Kyung
    • Korean Journal of Community Nutrition
    • /
    • v.22 no.5
    • /
    • pp.413-425
    • /
    • 2017
  • Objectives: Accurate assessment of energy expenditure is important for estimation of energy requirements in athletic children. The objective of this study was to evaluate the accuracy of accelerometer for prediction of selected activities' energy expenditure and intensity in athletic elementary school children. Methods: The present study involved 31 soccer players (16 males and 15 females) from an elementary school (9-12 years). During the measurements, children performed eight selected activities while simultaneously wearing the accelerometer and carrying the portable indirect calorimeter. Five equations (Freedson/Trost, Treuth, Pate, Puyau, Mattocks) were assessed for the prediction of energy expenditure from accelerometer counts, while Evenson equation was added for prediction of activity intensity, making six equations in total. The accuracy of accelerometer for energy prediction was assessed by comparing measured and predicted values, using the paired t-test. The intensity classification accuracy was evaluated with kappa statistics and ROC-Curve. Results: For activities of lying down, television viewing and reading, Freedson/Trost, Treuth were accurate in predicting energy expenditure. Regarding Pate, it was accurate for vacuuming and slow treadmill walking energy prediction. Mattocks was accurate in treadmill running activities. Concerning activity intensity classification accuracy, Pate (kappa=0.72) had the best performance across the four intensities (sedentary, light, moderate, vigorous). In case of the sedentary activities, all equations had a good prediction accuracy, while with light activities and Vigorous activities, Pate had an excellent accuracy (ROC-AUC=0.91, 0.94). For Moderate activities, all equations showed a poor performance. Conclusions: In conclusion, none of the assessed equations was accurate in predicting energy expenditure across all assessed activities in athletic children. For activity intensity classification, Pate had the best prediction accuracy.

Effects of insulin and exercise on glucose uptake of skeletal muscle in diabetic rats (당뇨병 흰쥐에서 운동부하가 시험관 실험에서 골격근의 당섭취에 미치는 영향)

  • Park, Jin-Hyun;Kim, Young-Woon;Kim, Jong-Yeon;Lee, Suck-Kang
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1990
  • The effects of insulin and exercise on glucose uptake of skeletal muscle were investigated in soleus muscle isolated from low dose streptozotocin induced diabetic rats in vitro. Glucose uptake was assessed by measuring $^3H$-methylglucose uptake in vitro. Basal glucose uptake in diabetes was reduced by approximately one-third of the control value($5.6{\pm}0.73{\mu}Mol$/g/20min. in diabetes versus $8.4{\pm}0.77$ in control, P<0.01). There was also a significant decrease(P<0.01) in glucose uptake of diabetes at physiologic insulin concentration ($200{\mu}IU$/ml) by 40% ($6.1{\pm}1.20$ versus $10.0{\pm}0.81$). Furthermore, maximal insulin($20000{\mu}IU$/ml)-stimulated glucose uptake was 36% lower in diabetes as compared with control($7.3{\pm}1.29$ versus $11.4{\pm}1.29$, P<0.01). In contrast, exercise(1.0km/hr, treadmill running for 45min.) effect on glucose uptake was so dramatic in diabetes that glucose uptake at basal state was 8.4+1.09 and insulin stimulated-glucose uptake were $10.2{\pm}1.47$ and $11.9{\pm}1.64$, in 200 and $20000{\mu}IU$/ml added insulin, respectively. These results suggest that insulin insensitivity develops in skeletal muscle after 2 weeks of streptozotocin-induced diabetes, but these insensitivity was recovered significantly by single session of running exercise.

  • PDF

Inhibitory Effects of Ssanghwa-tang on Lung Injury and Muscle Loss in a Cigarette Smoke Extract and Lipopolysaccharide-induced Chronic Obstructive Pulmonary Disease Mouse Model (표준담배추출물과 Lipopolysaccharide로 유발한 만성폐쇄성폐질환 동물모델에서 쌍화탕의 폐손상 및 근감소 억제 효과)

  • Jin-kwan Choi;Won-kyung Yang;Su-won Lee;Seong-cheon Woo;Seung-hyung Kim;Yang-chun Park
    • The Journal of Internal Korean Medicine
    • /
    • v.45 no.1
    • /
    • pp.11-30
    • /
    • 2024
  • Objectives: This study evaluated the effects of Ssanghwa-tang (SHT) on lung injury and muscle loss in a COPD mouse model. Methods: C57BL/6 mice were challenged with cigarette smoke extract and lipopolysaccharide, and then treated with two concentrations of SHT (250 and 500 mg/kg). After sacrifice, the bronchoalveolar lavage fluid (BALF) or lung tissue was analyzed by cytospin, ELISA, real-time PCR, flow cytometry analysis, and H&E and Masson's trichrome staining. The grip strength of COPD mice was measured using a grip strength meter. The running time of COPD mice was measured by a treadmill test. Muscle tissue of the quadriceps was stained with H&E and Masson's trichrome staining. Results: SHT significantly inhibited the increase in neutrophil numbers in BALF and significantly decreased immune cell activity in BALF and lung tissue. It also significantly inhibited the increase in TNF-α, IL-17, and MIP2 in BALF. Real-time PCR analysis revealed that the mRNA expression of TNF-α, IL-17, MIP2, and TRPV1 in lung tissue showed a significant decrease compared with the control group. Lung tissue damage was significantly reduced in the histological analysis. The grip strength and running time of the COPD mice showed a significant decrease compared with the control group. In histological staining, SHT was found to reduce the damage to muscle tissue. Conclusions: This study indicates that SHT can be used as a therapeutic agent for COPD patients by inhibiting lung injury and muscle loss.