• Title/Summary/Keyword: Traversing

Search Result 180, Processing Time 0.02 seconds

Versatile robotic platform for structural health monitoring and surveillance

  • Esser, Brian;Huston, Dryver R.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.325-338
    • /
    • 2005
  • Utilizing robotic based reconfigurable nodal structural health monitoring systems has many advantages over static or human positioned sensor systems. However, creating a robot capable of traversing a variety of civil infrastructures is a difficult task, as these structures each have unique features and characteristics posing a variety of challenges to the robot design. This paper outlines the design and implementation of a novel robotic platform for deployment on ferromagnetic structures as an enabling structural health monitoring technology. The key feature of this design is the utilization of an attachment device which is an advancement of the common magnetic base found in the machine tool industry. By mechanizing this switchable magnetic circuit and redesigning it for light weight and compactness, it becomes an extremely efficient and robust means of attachment for use in various robotic and structural health monitoring applications. The ability to engage and disengage the magnet as needed, the very low power required to do so, the variety of applicable geometric configurations, and the ability to hold indefinitely once engaged make this device ideally suited for numerous robotic and distributed sensor network applications. Presented here are examples of the mechanized variable force magnets, as well as a prototype robot which has been successfully deployed on a large construction site. Also presented are other applications and future directions of this technology.

Efficient Accesses of R-Trees for Distance Join Query Processing in Multi-Dimensional Space (다차원 공간에서 거리조인 질의처리를 위한 R-트리의 효율적 접근)

  • Sin, Hyo-Seop;Mun, Bong-Gi;Lee, Seok-Ho
    • Journal of KIISE:Databases
    • /
    • v.29 no.1
    • /
    • pp.72-78
    • /
    • 2002
  • The distance join is a spatial join which finds data pairs in the order of distance between two spatial data sets using R-trees. The distance join stores node pairs in a priority queue, which are retrieved while traversing R-trees in a top-town manner, in the order of distance. This paper first shows that a priority strategy for the tied pairs in the priority queue during distance join processing has much effect on its performance, and then proposes an optimized secondary priority method. The experiments show that the proposed method is always better than the other methods in the performance perspectives.

M_CSPF: A Scalable CSPF Routing Scheme with Multiple QoS Constraints for MPLS Traffic Engineering

  • Hong, Daniel W.;Hong, Choong-Seon;Lee, Gil-Haeng
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.733-746
    • /
    • 2005
  • In the context of multi-protocol label switching (MPLS) traffic engineering, this paper proposes a scalable constraintbased shortest path first (CSPF) routing algorithm with multiple QoS metrics. This algorithm, called the multiple constraint-based shortest path first (M_CSPF) algorithm, provides an optimal route for setting up a label switched path (LSP) that meets bandwidth and end-to-end delay constraints. In order to maximize the LSP accommodation probability, we propose a link weight computation algorithm to assign the link weight while taking into account the future traffic load and link interference and adopting the concept of a critical link from the minimum interference routing algorithm. In addition, we propose a bounded order assignment algorithm (BOAA) that assigns the appropriate order to the node and link, taking into account the delay constraint and hop count. In particular, BOAA is designed to achieve fast LSP route computation by pruning any portion of the network topology that exceeds the end-to-end delay constraint in the process of traversing the network topology. To clarify the M_CSPF and the existing CSPF routing algorithms, this paper evaluates them from the perspectives of network resource utilization efficiency, end-to-end quality, LSP rejection probability, and LSP route computation performance under various network topologies and conditions.

  • PDF

Measurement of Outward Turbulent Flows Subject to Plane Rate of Strain in a Rotating 90 Deg. Curved Duct of Variable Cross-Section (단순변형률 조건 하의 회전하는 가변단면 $90^{\circ}$ 곡덕트내 외향 난류유동 측정)

  • Oh, Chang-Min;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.623-631
    • /
    • 2000
  • Hot-wire measurements were carried out on the developing turbulent flows subject to plane rate of strain in a rotating curved duct. The cross-section of the curved duct varies from 100mm${\times}$50mm rectangular shape at the bend inlet gradually to the 50mm${\times}$100mm rectangular shape at the bend outlet. Experimental setup consists of the test section of $90^{\circ}$ curved duct, rotating disc of 1.95m diameter, Ag-Ni precision slip ring, automatic traversing mechanism, variable speed motor, centrifugal blower, orifice flowmeter and hot-wire anemometer. Data signals from the rotating curved duct are transmitted through the slip ring to the computer which is located at the outside of the rotating disc. 3-dimensional velocity and 6 Reynold stresses components were obtained from the fluctuating and mean voltage measured by the slant type hot-wire probe rotating into 6 orientations. We investigate the effects of Coriolis and centrifugal forces on the turbulence structure.

Deformation analyses during subway shield excavation considering stiffness influences of underground structures

  • Zhang, Zhi-guo;Zhao, Qi-hua;Zhang, Meng-xi
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.117-139
    • /
    • 2016
  • Previous studies for soil movements induced by tunneling have primarily focused on the free soil displacements. However, the stiffness of existing structures is expected to alter tunneling-induced ground movements, the sheltering influences for underground structures should be included. Furthermore, minimal attention has been given to the settings for the shield machine's operation parameters during the process of tunnels crossing above and below existing tunnels. Based on the Shanghai railway project, the soil movements induced by an earth pressure balance (EPB) shield considering the sheltering effects of existing tunnels are presented by the simplified theoretical method, the three-dimensional finite element (3D FE) simulation method, and the in-situ monitoring method. The deformation prediction of existing tunnels during complex traversing process is also presented. In addition, the deformation controlling safety measurements are carried out simultaneously to obtain the settings for the shield propulsion parameters, including earth pressure for cutting open, synchronized grouting, propulsion speed, and cutter head torque. It appears that the sheltering effects of underground structures have a great influence on ground movements caused by tunneling. The error obtained by the previous simplified methods based on the free soil displacements cannot be dismissed when encountering many existing structures.

On the Hardware Complexity of Tree Expansion in MIMO Detection

  • Kong, Byeong Yong;Lee, Youngjoo;Yoo, Hoyoung
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.3
    • /
    • pp.136-141
    • /
    • 2021
  • This paper analyzes the tree expansion for multiple-input multiple-output (MIMO) detection in the viewpoint of hardware implementation. The tree expansion is to calculate path metrics of child nodes performed in every visit to a node while traversing the detection tree. Accordingly, the tree-expansion unit (TEU), which is responsible for such a task, has been an essential component in a MIMO detector. Despite the paramount importance, the analyses on the TEUs in the literature are not thorough enough. Accordingly, we further investigate the hardware complexity of the TEUs to suggest a guideline for selection. In this paper, we focus on a pair of major ways to implement the TEU: 1) a full parallel realization; 2) a transformation of the formulae followed by common subexpression elimination (CSE). For a logical comparison, the numbers of multipliers and adders are first enumerated. To evaluate them in a more practical manner, the TEUs are implemented in a 65-nm CMOS process, and their propagation delays, gate counts, and power consumptions were measured explicitly. Considering the target specification of a MIMO system and the implementation results comprehensively, one can choose which architecture to adopt in realizing a detector.

Dynamic analysis of wind-vehicle-bridge system considering additional moments of non-uniform winds by wind shielding effect of multi-limb tower

  • Xu Han;Huoyue Xiang;Xuli Chen;Yongle Li
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • To evaluate the wind shielding effect of bridge towers with multiple limbs on high-speed trains, a wind tunnel test was conducted to investigate the aerodynamic characteristics of vehicles traversing multi-limb towers, which represented a combination of the steady aerodynamic coefficient of the vehicle-bridge system and wind environment around the tower. Subsequently, the analysis model of wind-vehicle-bridge (WVB) system considering the additional moments caused by lift and drag forces under nonuniform wind was proposed, and the reliability and accuracy of the proposed model of WVB system were verified using another model. Finally, the factors influencing the wind shielding effect of multi-limb towers were analyzed. The results indicate that the wind speed distributions along the span exhibit two sudden changes, and the wind speed generally decreases with increasing wind direction angle. The pitching and yawing accelerations of vehicles under nonuniform wind loads significantly increase due to the additional pitching and yawing moments. The sudden change values of the lateral and yawing accelerations caused by the wind shielding effect of multi-limb tower are 0.43 m/s2 and 0.11 rad/s2 within 0.4 s, respectively. The results indicate that the wind shielding effect of a multi-limb tower is the controlling factor in WVB systems.

The Politics of Diversity in American Disability Theater: Performing the Intersection of Disability, Race, and Ethnicity (미국 장애연극에 나타난 다양성의 정치학 -장애, 인종, 민족성의 교차 공연)

  • Kim, Yungduk
    • Journal of English Language & Literature
    • /
    • v.56 no.4
    • /
    • pp.597-618
    • /
    • 2010
  • This paper discusses American disability theater's representations of disability identity and disability identity politics. Dramatists John Belluso and Lynn Manning, among others, present characters with disabilities who experience oppressions at multiple, interlocking levels of domination on the basis of disability, race, and ethnicity. In Manning's Shoot, the black, blind hero iterates episodes in which he experienced discrimination and insults in encounters with whites who used derogatory racist words or belittled him and with some school children who taunted him for just being blind. This play, as in Manning's solo performance, Weights, presents narratives of a blind person traversing multiple locations of oppression in "a long litany of losses" in a white-dominated and ableist society. Belluso's Gretty Good Time similarly weaves together stories of disabled women, Gretty and Hideko, who bond together to resist the dominant ideology that reduces them into titillating commodities of mass consumption. Hideko's story serves the two-fold function of both affirming the specificity of her individual experience as an ethnic other and espousing the communal experience of stigmatization she shares with other disabled women like Gretty. In these plays, the intersection of the identity categories of disability, race, and ethnicity highlights the diversity of the body and the fluidity of boundaries, foregounding the specificity of disabled bodies, while at the same time overthrowing the hierarchical binarism between disabled and "normal" bodies.

Free tissue transfer for reconstruction of axillary defects: two case reports

  • Asha Deepthi Bathini;Parvathi Ravula;Srinivas Jammula;Srikanth Rangachari;Priyanka Pereira
    • Journal of Trauma and Injury
    • /
    • v.36 no.4
    • /
    • pp.425-430
    • /
    • 2023
  • Axillary defects need pliable, vascular tissue to cover the critical structures traversing the axilla and to allow near-normal range of motion in the shoulder. Although local flaps are the first choice, free tissue transfer is a good option when local tissues are injured or scarred. Herein, we report two cases of axillary defects that were reconstructed using anterolateral thigh free flaps. One was a post-electric burn axillary defect for which a thoracoacromial pedicle was used as the recipient, and the other was a posttraumatic axillary defect with the transverse cervical vessels as the recipient. In both patients, the flap survived well with no complications and resulted in adequate functional recovery. In large defects of the axilla with a scarcity of local tissues, free flaps can yield optimal results. The proper selection of recipient vessels and a donor flap with adequate pedicle length impact the outcomes of such reconstruction.

Modeling and Analysis of the Speed Profiles for the Gasoline Hybrid Vehicle in the Real Driving Emission Test (가솔린 하이브리드 차량의 실도로 배기규제 평가를 위한 구간 주행 속도 특성 분석 및 해석 모델 개발 연구)

  • Seongsu Kim;Minho Lee;Kyoungha Noh;Junghwan Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.184-190
    • /
    • 2023
  • The European Union has instituted a new emission standard protocol that necessitates real-time measurements from vehicles on actual roads. The adequate development of routes for real driving emissions (RDE) mandates substantial resources, encompassing both vehicles and a portable emission measurement system (PEMS). In this study, a simulation tool was utilized to predict the vehicle speed traversing the routes developed for the RDE measurements. Initially, the vehicle powertrain system was modeled for both a gasoline hybrid vehicle and a gasoline engine-only vehicle. Subsequently, the speed profile for the specified vehicle was constructed based on the RDE route developed for the EURO-6 standard. Finally, the predicted vehicle speed profiles for highway and urban routes were assessed utilizing the actual driving data. The driving model predicted more consistency in the vehicle speed at each driving section. Meanwhile, the human driver tended to accelerate further, and then decelerate in each section, instead of cruising at a predicted section speed.