• Title/Summary/Keyword: Travelling Salesman Problem(TSP)

Search Result 25, Processing Time 0.028 seconds

Self Organizing Feature Map Type Neural Computation Algorithm for Travelling Salesman Problem (SOFM(Self-Organizing Feature Map)형식의 Travelling Salesman 문제 해석 알고리즘)

  • Seok, Jin-Wuk;Cho, Seong-Won;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.983-985
    • /
    • 1995
  • In this paper, we propose a Self Organizing Feature Map (SOFM) Type Neural Computation Algorithm for the Travelling Salesman Problem(TSP). The actual best solution to the TSP problem is computatinally very hard. The reason is that it has many local minim points. Until now, in neural computation field, Hopield-Tank type algorithm is widely used for the TSP. SOFM and Elastic Net algorithm are other attempts for the TSP. In order to apply SOFM type neural computation algorithms to the TSP, the object function forms a euclidean norm between two vectors. We propose a Largrangian for the above request, and induce a learning equation. Experimental results represent that feasible solutions would be taken with the proposed algorithm.

  • PDF

Solving the Travelling Salesman Problem Using an Ant Colony System Algorithm

  • Zakir Hussain Ahmed;Majid Yousefikhoshbakht;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.55-64
    • /
    • 2023
  • The travelling salesman problem (TSP) is an important combinatorial optimization problem that is used in several engineering science branches and has drawn interest to several researchers and scientists. In this problem, a salesman from an arbitrary node, called the warehouse, starts moving and returns to the warehouse after visiting n clients, given that each client is visited only once. The objective in this problem is to find the route with the least cost to the salesman. In this study, a meta-based ant colony system algorithm (ACSA) is suggested to find solution to the TSP that does not use local pheromone update. This algorithm uses the global pheromone update and new heuristic information. Further, pheromone evaporation coefficients are used in search space of the problem as diversification. This modification allows the algorithm to escape local optimization points as much as possible. In addition, 3-opt local search is used as an intensification mechanism for more quality. The effectiveness of the suggested algorithm is assessed on a several standard problem instances. The results show the power of the suggested algorithm which could find quality solutions with a small gap, between obtained solution and optimal solution, of 1%. Additionally, the results in contrast with other algorithms show the appropriate quality of competitiveness of our proposed ACSA.

Code Optimization of DNA Computing for Travelling Salesman Problem (Travelling Salesman Problem을 위한 DNA 컴퓨팅의 코드 최적화)

  • Kim, Eun-Kyoung;Lee, Sang-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.323-326
    • /
    • 2002
  • DNA 컴퓨팅은 생체 분자들이 갖는 막대한 병렬성을 이용하여 조합 최적화 문제에 적용하는 연구가 많이 시도되고 있다. 특히 TSP(Travelling Salesman Problem)는 간선에 대한 가중치 정보가 추가되어 있기 때문에 가중치를 DNA 염기 배열로 표현하기 위한 효율저인 방법들이 제시되지 않았다. 따라서 본 논문에서는 DNA 컴퓨팅에 DNA 코딩 방법을 적용하여 정점과 간선을 효율적으로 생성하고 표현된 DNA 염기 배열의 간선에 실제간을 적용하여 가중치 정보를 계산하는 ACO(Algorithm for Code Optimization)를 제안한다. DNA 코딩 방법은 변형된 유전자 알고리즘으로 DNA 기능을 유지하며, 서열의 길이를 줄일 수 있으므로 최적의 서열을 생성할 수 있는 특징을 갖는다. 실험에서 ACO를 TSP에 적용하여 Adleman의 DNA 컴퓨팅 알고리즘과 비교하였다. 그 결과 초기 문제 표현에서 우수한 적합도 값을 생성했으며, 경로의 변화에도 능동적으로 대처하여 최적의 결과를 빠르게 탐색할 수 있었다.

  • PDF

Optimal Solution of a Large-scale Travelling Salesman Problem applying DNN and k-opt (DNN과 k-opt를 적용한 대규모 외판원 문제의 최적 해법)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.249-257
    • /
    • 2015
  • This paper introduces a heuristic algorithm to NP-hard travelling salesman problem. The proposed algorithm, in its bid to determine initial path, applies SW-DNN, DW-DNN, and DC-DNN, which are modified forms of the prevalent Double-sided Nearest Neighbor Search and searches the minimum value. As a part of its optimization process on the initial solution, it employs 2, 2.5, 3-opt of a local search k-opt on candidate delete edges and 4-opt on undeleted ones among them. When tested on TSP-1 of 26 European cities and TSP-2 of 49 U.S. cities, the proposed algorithm has successfully obtained optimal results in both, disproving the prevalent disbelief in the attainability of the optimal solution and making itself available as a general algorithm for the travelling salesman problem.

Integer Programming Model to the Travelling Salesman Problems with Route Dependent Travel Cost (경로의존 이동 비용을 갖는 외판원 문제의 정수계획 모형)

  • Yu, Sung-Yeol
    • Management & Information Systems Review
    • /
    • v.29 no.4
    • /
    • pp.109-121
    • /
    • 2010
  • In this study, we propose a solution procedure to solve travelling salesman problem(TSP) with special cost function, route dependent travelling salesman problem(RDTSP). First, we develop an integer programming model to describe the problem. In the model, a variable means a possible route. And, the number of variables in this model are extremely large. So, we develop a LP relaxation problem of the IP model and solve the relaxation problem by a column generation technique. The relaxation problem does not guarantee the optimal solution. If we get an integer solution in the ralaxation problem, then the solution is an optimal one. But, if not, we cannot get an optimal solution. So, we approach a branch and price technique. The overall solution procedure can be applied a printed circuit board(PCB) assembly process.

  • PDF

An Approsimate Solution of Travelling Salesman Problem Using a Smoothing Method

  • ARAKI, Tomoyuki;YAMAMOTO, Fujio
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.75-79
    • /
    • 1998
  • It is well known that traveling salesman problem (for short, TSP) is one of mot important problems for optimization, and almost all optimization problems result in TSP. This paper describes on an effective solution of TSP using genetic algorithm. The features of our method are summarized as follows : (1) By using division and unification method, a large problem is replaced with some small ones. (2) Smoothing method proposed in this paper enables us to obtain a fine approximate solution globally. Accordingly, demerits caused by division and unification method are decreased. (3) Parallel operation is available because all divided problems are independent of each other.

  • PDF

An Efficiency Analysis on Mutation Operation with TSP solved in Genetic Algorithm

  • Yoon, Hoijin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.55-61
    • /
    • 2020
  • Genetic Algorithm(GA) is applied to a problem that could not figure out its solution in a straightway. It is called as NP-hard problem. GA requires a high-performance system to be run on since the high-cost operations are needed such as crossover, selection, and mutation. Moreover, the scale of the problem domain is normally huge. That is why the straightway cannot be applied. To reduce the drawback of high-cost requirements, we try to answer if all the operations including mutation are necessary for all cases. In the experiment, we set up two cases of with/without mutation operations and gather the number of generations and the fitness of a solution. The subject in the experiment is Travelling Salesman Problem(TSP), which is one of the popular problems solved by GA. As a result, the cases with mutation operation are not faster and the solution is fitter than the case with mutation operation. From the result, the conclusion is that mutation operation does not always need for a better solution in a faster way.

Development of a Neural network for Optimization and Its Application Traveling Salesman Problem

  • Sun, Hong-Dae;Jae, Ahn-Byoung;Jee, Chung-Won;Suck, Cho-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.169.5-169
    • /
    • 2001
  • This study proposes a neural network for solving optimization problems such as the TSP (Travelling Salesman Problem), scheduling, and line balancing. The Hopfield network has been used for solving such problems, but it frequently gives abnormal solutions or non-optimal ones. Moreover, the Hopfield network takes much time especially in solving large size problems. To overcome such disadvantages, this study adopts nodes whose outputs changes with a fixed value at every evolution. The proposed network is applied to solving a TSP, finding the shortest path for visiting all the cities, each of which is visted only once. Here, the travelling path is reflected to the energy function of the network. The proposed network evolves to globally minimize the energy function, and a ...

  • PDF

The Maximum Scatter Travelling Salesman Problem: A Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Asaad Shakir Hameed;Modhi Lafta Mutar;Mohammed F. Alrifaie;Mundher Mohammed Taresh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.193-201
    • /
    • 2023
  • In this paper, we consider the maximum scatter traveling salesman problem (MSTSP), a travelling salesman problem (TSP) variant. The problem aims to maximize the minimum length edge in a salesman's tour that travels each city only once in a network. It is a very complicated NP-hard problem, and hence, exact solutions can be found for small sized problems only. For large-sized problems, heuristic algorithms must be applied, and genetic algorithms (GAs) are found to be very successfully to deal with such problems. So, this paper develops a hybrid GA (HGA) for solving the problem. Our proposed HGA uses sequential sampling algorithm along with 2-opt search for initial population generation, sequential constructive crossover, adaptive mutation, randomly selected one of three local search approaches, and the partially mapped crossover along with swap mutation for perturbation procedure to find better quality solution to the MSTSP. Finally, the suggested HGA is compared with a state-of-art algorithm by solving some TSPLIB symmetric instances of many sizes. Our computational experience reveals that the suggested HGA is better. Further, we provide solutions to some asymmetric TSPLIB instances of many sizes.

Travelling Salesman Problem Based on Area Division and Connection Method (외판원 문제의 지역 분할-연결 기법)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.211-218
    • /
    • 2015
  • This paper introduces a 'divide-and-conquer' algorithm to the travelling salesman problem (TSP). Top 10n are selected beforehand from a pool of n(n-1) data which are sorted in the ascending order of each vertex's distance. The proposed algorithm then firstly selects partial paths that are interconnected with the shortest distance $r_1=d\{v_i,v_j\}$ of each vertex $v_i$ and assigns them as individual regions. For $r_2$, it connects all inter-vertex edges within the region and inter-region edges are connected in accordance with the connection rule. Finally for $r_3$, it connects only inter-region edges until one whole Hamiltonian cycle is constructed. When tested on TSP-1(n=26) and TSP-2(n=42) of real cities and on a randomly constructed TSP-3(n=50) of the Euclidean plane, the algorithm has obtained optimal solutions for the first two and an improved one from that of Valenzuela and Jones for the third. In contrast to the brute-force search algorithm which runs in n!, the proposed algorithm runs at most 10n times, with the time complexity of $O(n^2)$.