Rail transport has grown over the Past decades, and rail networks have highly concentrated in urban area, and it is possible for rail passengers to choose a route anions a number of alternative routes. Analysis of factors influencing the choice of route, are required to estimate the rail travel demand of each route. In this paper, we describes route choice model for the transit assignment and characteristics of the route choice(i.e., by relative travel time and fares), and attempts to estimate travel demand of new rail transit based on the slated preference(SP) survey data of Nanko Porttown, which is located in Osaka, Japan.
Spatial experiences in route finding, such as the ability of finding low-traffic routes, exert a significant influence on travel time in big cities; therefore, the spatial experiences of seasoned individuals such as taxi drivers in route finding can be useful for improving route-finding algorithms and preventing using routes having considerable traffic. In this regard, a spatial experience-based route-finding algorithm is introduced through ontology in this paper. To this end, different methods of modeling experiences are investigated. Then, a modeling method is chosen for modeling the experiences of drivers for route finding depending on the advantages of ontology, and an ontology based on the taxi drivers' experiences is proposed. This ontology is employed to create an ontology-based route-finding algorithm. The results are compared with those of Google maps in terms of route length and travel time at peak traffic time. According to the results, although the route lengths of route-finding method based on the ontology of drivers' experiences in three cases (from nine cases) are greater than that based on Google maps, the travel times are shorter in most cases, and in some routes, the difference in travel time reaches only 10 minutes.
Advanced Traveler Inoformation Systems*ATIS) , as a subsystem of ITS influence the travel choices of dreivers by providing them with historical, real-time and predictive information to supprot travel decisions and consequently improves the speed and quality of travel. For thesuccessul accomplishment of ATIS, the time-dependent variations of traffic in a road network and travel times of vehicles during their journey must be predicted . The purpose of this study is to evaluate the past developments in the dynamic route choice models and to apply the instantaneous dynamic user optimal route choice model. recently formulated with flow propagation constraints by Ran, Boyce and LeBlanc, to the real transportation network of Seocho-Ku in Seoul. As input data for this application, the time-dependent travel rates are estimated and the link travel time function is derived. The modelis validated from three view points : the efficiency of model itself the ability to predict traffic volume and travel time on links, and the optimal traffic control.
The multinomial logit model has been applied for various choice problems. Among others, the joint destination mode choice, the mode choice and the route choice are the three major modeling topics for korean transportation planners. This paper examines with real world data (the Olympic road and its competing two major arterials) the usefulness of a Logit route choice model. Quites surpisingly, it is found that the multinomial route choice behavioral model calibrated for this study based on (0,1) individula data base can not provide a good estimate for O-D trips less than 6㎞. 400data points and 3case studies might not be sufficient for a sound conclusion. It is, however, believed from a series of similar studies conducted by the authors that the route choice behavior is more sensitive (more demand elastic with respect to travel time changes) than the mode choice and the shorter trip, the more sensitive. The travel time parameters for destination choice models are usually smalle than the travel time parameters for mode choice models and these parameters (for mode choice models) turn our smaller than the travel time parameters for route choice models from this study. Table 2 in this paper shows parameter changes for three different markets and Table 3 shows the modeling errors when the estimated individual probabilities are aggregated into a route level.
KSCE Journal of Civil and Environmental Engineering Research
/
v.31
no.2D
/
pp.193-201
/
2011
The provision of traffic information plays an important role in increasing social benefit not only by saving travel time for individuals but also by improving the efficiency of road operation. VMS(Variable Message Sign) helps on-wheel drivers easily understand the road situation, and also provides real-time traffic information to people on the streets. However, it has not been sufficiently studied on how traffic information based on VMS influences on the drivers' selection of route. This study investigated how drivers use VMS traffic information and how they are satisfied with it. Then, the model of drivers' route selection was specified with the types of traffic information and the expected travel time to examine the influence on the selection of drivers' route. The model was estimated and analyzed in three types according to the condition of detour roads, and the rate of route change and the degree of sensitivity was calculated from the estimation. The results of analysis are as follows. the $1^{st}$ type model showed the 10% of route change for the travel time saving of 5minutes, and the 81.6% of route change for the travel time saving of 20minutes. The $2^{nd}$ type led to the range of route change from 14.2% to 92.7% over the 5 through 20 minutes of travel time saving. The $3^{rd}$ model resulted in the 99.1% of route change. The sensitivity of route change showed the highest for the travel time saving of 11 minutes with the $1^{st}$ type model, 9 minutes with the $2^{nd}$ type model, and 5 minutes with the $3^{rd}$ type model respectively.
Journal of the Korea Society of Computer and Information
/
v.27
no.5
/
pp.117-125
/
2022
Recently, as users' interest for travel increases, research on a travel route recommendation service that replaces the cumbersome task of planning a travel itinerary with automatic scheduling has been actively conducted. The most important and common goal of the itinerary recommendations is to provide the shortest route including popular tour spots near the travel destination. A number of existing studies focused on providing personalized travel schedules, where there was a problem that a survey was required when there were no travel route histories or SNS reviews of users. In addition, implementation issues that need to be considered when calculating the shortest path were not clearly pointed out. Regarding this, this paper presents a quantified method to find out popular tourist destinations using social big data, and discusses problems that may occur when applying the shortest path algorithm and a heuristic algorithm to solve it. To verify the proposed method, 63,000 places information was collected from the Gyeongnam province and big data analysis was performed for the places, and it was confirmed through experiments that the proposed heuristic scheduling algorithm can provide a timely response over the real data.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.2
no.1
s.2
/
pp.101-108
/
2003
When drivers encounter multiple available routes, they may evaluate the utility of each route. Two important factors in the evaluation are travel time and travel cost. Without hewing the current travel time of each route, drivers' decisions are not necessarily optimum. It is called 'transparency issue' that drivers are blinded to choose the optimum route among the others because of the limited travel time information. As a result of this, competing route travel times tend to fluctuate. This case study to utilize the data of Namsan traffic information system confirms that this travel time fluctuation can be lessened as real time traffic information is provided.
We propose a general solution methodology for identifying the optimal aggregation interval sizes as a function of the traffic dynamics and frequency of observations for four cases : i) link travel time estimation, ii) corridor/route travel time estimation, iii) link travel time forecasting. and iv) corridor/route travel time forecasting. We first develop statistical models which define Mean Square Error (MSE) for four different cases and interpret the models from a traffic flow perspective. The emphasis is on i) the tradeoff between the Precision and bias, 2) the difference between estimation and forecasting, and 3) the implication of the correlation between links on the corridor/route travel time estimation and forecasting, We then demonstrate the Proposed models to the real-world travel time data from Houston, Texas which were collected as Part of the Automatic Vehicle Identification (AVI) system of the Houston Transtar system. The best aggregation interval sizes for the link travel time estimation and forecasting were different and the function of the traffic dynamics. For the best aggregation interval sizes for the corridor/route travel time estimation and forecasting, the covariance between links had an important effect.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.4
no.3
s.8
/
pp.9-22
/
2005
Route travel cost in transportation networks consists of actual route travel cost and route perception cost. Since the route perception cost is differently perceived according to each origin and each destination, route search has limitation to reflect the note perception cost due to route enumeration problem. Thus, currently employed advanced traveller information systems (ATIS) have considered only actual route travel cost for providing route information. This study proposes an optimal and a K-route searching algorithm which are able to reflect the route perception cost but encompass route enumeration problem. For this purpose, this research defines the minimum nit of route as a link by adopting the link label technique in route searching, therefore the comparison of two adjacent links which can be finally expanded the comparison of two routes. In order to reflect the characteristics of route perception in real situation, an optimal shortest cost path algorithm that both the forward search from the origin and the backward search from the destination can be simultaneously processed is proposed. The proposed algorithm is applied for finding K number of shortest routes with an entire-path-deletion-type of K shortest route algorithm.
The submerged floating tunnel (SFT) infrastructure has been regarded as an emerging technology that efficiently and safely connects land and islands. The SFT route problem is an essential part of the SFT planning and design phase, with significant impacts on the surrounding environment. This study aims to develop an optimization model considering transportation and structure factors. The SFT routing problem was optimized based on two objective functions, i.e., minimizing total travel time and cumulative strains, using NSGA-II. The proposed model was applied to the section from Mokpo to Jeju Island using road network and wave observation data. As a result of the proposed model, a Pareto optimum curve was obtained, showing a negative correlation between the total travel time and cumulative strain. Based on the inflection points on the Pareto optimum curve, four optimal SFT routes were selected and compared to identify the pros and cons. The travel time savings of the four selected alternatives were estimated to range from 9.9% to 10.5% compared to the non-implemented scenario. In terms of demand, there was a substantial shift in the number of travel and freight trips from airways to railways and roadways. Cumulative strain, calculated based on SFT distance, support structure, and wave energy, was found to be low when the route passed through small islands. The proposed model helps decision-making in the planning and design phases of SFT projects, ultimately contributing to the progress of a safe, efficient, and sustainable SFT infrastructure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.