• Title/Summary/Keyword: Travel Time Prediction

Search Result 99, Processing Time 0.023 seconds

Development of a Tourist Satisfaction Quantitative Index for Building a Rating Prediction Model: Focusing on Jeju Island Tourist Spot Reviews (평점 예측 모델 개발을 위한 관광지 만족도 정량 지수 구축: 제주도 관광지 리뷰를 중심으로)

  • Dong-kyu Yun;Ki-tae Park;Sang-hyun Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.185-205
    • /
    • 2023
  • As the tourism industry recovers post the COVID-19 pandemic, an increasing number of tourists are utilizing various platforms to leave reviews. However, amidst the vast amount of data, finding useful information remains challenging, often leading to time and cost inefficiencies in selecting travel destinations. Despite ongoing research, there are limitations due to the absence of ratings or the presence of different rating formats across platforms. Moreover, inconsistencies between ratings and the content of reviews pose challenges in developing recommendation models. To address these issues, this study utilized 7,104 reviews of tourist spots in Jeju Island to develop a specialized satisfaction index for Jeju tourist attractions and employed this index to construct a 'Rating Prediction Model.' To validate the model's performance, we predicted the ratings of 700 experimental data points using both the developed model and an LSTM approach. The proposed model demonstrated superior performance with a weighted accuracy of 73.87%, which is approximately 4.67% higher than that of the LSTM. The results of this study are expected to resolve the discrepancies between ratings and review contents, standardize ratings in reviews without ratings or in various formats, and provide reliable rating indicators applicable across all areas of travel in different domains.

An Analysis on the Efficiency of Bus Information Systems in Bucheon City (부천시 사례를 통한 버스정보시스템 운영효과 분석)

  • 배덕모
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.7-18
    • /
    • 2002
  • To activate public transportation service, Bucheon City built Bus Information System based on Beacon type, and operates it for no.22 line. This research analyzes an effect of BIS operations, and mainly it analyzes far reliability evaluation of bus arrival time information and passenger satisfaction about BIS. As results of reliability evaluation of arrival time information service, it is proven to be practically inappropriate to use as arrival time data because it is not only travel time between each bus stop but also previous travel time history data. In order to improve this matter, neural network model was evaluated as the most outstanding one as result of experiment in applying current arrival time Prediction model. This research cannot help limiting for evaluation of operation effect in Bucheon City because there is no Bus Information System based on GPS type in Korea. For the future ITS model city, in the case of building ITS model city based on GPS type, it is possible to compare two systems relatively. In addition to that, fur the consideration of reliability of bus arrival time information, it is required to develop Predictable model and research factors that affect to bus operation.

Prediction Model of User Physical Activity using Data Characteristics-based Long Short-term Memory Recurrent Neural Networks

  • Kim, Joo-Chang;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2060-2077
    • /
    • 2019
  • Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.

A Study on the Application of Machine Learning to Improve BIS (Bus Information System) Accuracy (BIS(Bus Information System) 정확도 향상을 위한 머신러닝 적용 방안 연구)

  • Jang, Jun yong;Park, Jun tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.42-52
    • /
    • 2022
  • Bus Information System (BIS) services are expanding nationwide to small and medium-sized cities, including large cities, and user satisfaction is continuously improving. In addition, technology development related to improving reliability of bus arrival time and improvement research to minimize errors continue, and above all, the importance of information accuracy is emerging. In this study, accuracy performance was evaluated using LSTM, a machine learning method, and compared with existing methodologies such as Kalman filter and neural network. As a result of analyzing the standard error for the actual travel time and predicted values, it was analyzed that the LSTM machine learning method has about 1% higher accuracy and the standard error is about 10 seconds lower than the existing algorithm. On the other hand, 109 out of 162 sections (67.3%) were analyzed to be excellent, indicating that the LSTM method was not entirely excellent. It is judged that further improved accuracy prediction will be possible when algorithms are fused through section characteristic analysis.

Measurement of CSF's Maturity for Korean e-Biz Market (한국 e-Biz 시장의 핵심성공요인 성숙도 측정)

  • Hong, Hyun-Gi
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.7
    • /
    • pp.161-170
    • /
    • 2007
  • E-Business has, nowadays, become a common commerce transaction. In the beginning, e-Biz has known as Electronic Commerce and has expanded its territory to department store's shopping mall, travel, finance, stock, and even luxury goods as car sales market. Considering these trends, this paper researched the environment of korean e-Biz market and suggested the picture of the matured and sound e-Biz market in Korea. We surveyed matured level of Critical Success Factors of e-Biz in terms of management. We also surveyed time based Critical Success Factors to analyze level of the Korean e-Biz market. These study's may provide us the knowledge about the prediction and preparation for changes in e-Biz market in the future.

A Queue Length Prediction Algorithm using Kalman Filter (Kalman Filter를 활용한 대기행렬예측 알고리즘 개발)

  • 심소정;이청원;최기주
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.145-152
    • /
    • 2002
  • Real-time queueing information and/or predictive queue built-up information can be a good criterion in selecting travel options, such as routes, both for users, and for operators in operating transportation system. Provided properly, it will be a key information for reducing traffic congestion. Also, it helps drivers be able to select optimal roues and operators be able to manage the system effectively as a whole. To produce the predictive queue information, this paper proposes a predictive model for estimating and predicting queue lengths, mainly based on Kalman Filter. It has a structure of having state space model for predicting queue length which is set as observational variable. It has been applied for the Namsan first tunnel and the application results indicate that the model is quite reasonable in its efficacy and can be applicable for various ATIS system architecture. Some limitations and future research agenda have also been discussed.

Short-Term Prediction of Vehicle Speed on Main City Roads using the k-Nearest Neighbor Algorithm (k-Nearest Neighbor 알고리즘을 이용한 도심 내 주요 도로 구간의 교통속도 단기 예측 방법)

  • Rasyidi, Mohammad Arif;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.121-131
    • /
    • 2014
  • Traffic speed is an important measure in transportation. It can be employed for various purposes, including traffic congestion detection, travel time estimation, and road design. Consequently, accurate speed prediction is essential in the development of intelligent transportation systems. In this paper, we present an analysis and speed prediction of a certain road section in Busan, South Korea. In previous works, only historical data of the target link are used for prediction. Here, we extract features from real traffic data by considering the neighboring links. After obtaining the candidate features, linear regression, model tree, and k-nearest neighbor (k-NN) are employed for both feature selection and speed prediction. The experiment results show that k-NN outperforms model tree and linear regression for the given dataset. Compared to the other predictors, k-NN significantly reduces the error measures that we use, including mean absolute percentage error (MAPE) and root mean square error (RMSE).

돌발홍수 모니터링 및 예측 모형을 이용한 예측(F2MAP)태풍 루사에 의한 양양남대천 유역의 돌발홍수 모니터링

  • Kim, Byung-Sik;Hong, Jun-Bum;Choi, Kyu-Hyun;Yoon, Seok-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1145-1149
    • /
    • 2006
  • The typhoon Rusa passed through the Korean peninsula from the west-southern part to the east-northern part in the summer season of 2002. The flash flood due to the Rusa was occurred over the Korean peninsula and especially the damage was concentrated in Kangnung, Yangyang, Kosung, and Jeongsun areas of Kangwon-Do. Since the latter half of the 1990s the flash flood has became one of the frequently occurred natural disasters in Korea. Flash floods are a significant threat to lives and properties. The government has prepared against the flood disaster with the structural and nonstructural measures such as dams, levees, and flood forecasting systems. However, since the flood forecasting system requires the rainfall observations as the input data of a rainfall-runoff model, it is not a realistic system for the flash flood which is occurred in the small basins with the short travel time of flood flow. Therefore, the flash flood forecasting system should be constructed for providing the realistic alternative plan for the flash flood. To do so, firstly, Flash Flood Monitoring and Prediction (FFMP) Model must be developed suitable to Korea terrain. In this paper, We develop the FFMP model which is based on GIS, Radar techniques and hydro-geomorphologic approaches. We call it the F2MAP model. F2MAP model has three main components (1) radar rainfall estimation module for the Quantitative Precipitation Forecasts (QPF), (2) GIS Module for the Digital terrain analysis, called TOPAZ(Topographic PArametiZation), (3) hydrological module for the estimation of threshold runoff and Flash Flood Guidance(FFG). For the performance test of the model developed in this paper, F2MAP model applied to the Kangwon-Do, Korea, where had a severe damage by the Typhoon Rusa in August, 2002. The result shown that F2MAP model is suitable for the monitoring and the prediction of flash flood.

  • PDF

The System for Predicting the Traffic Flow with the Real-time Traffic Information (실시간 교통 정보를 이용한 교통 혼잡 예측 시스템)

  • Yu Young-Jung;Cho Mi-Gyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1312-1318
    • /
    • 2006
  • One of the common services of telematics is the car navigation that finds the shortest path from source to target. Until now, some routing algorithms of the car navigation do not consider the real-time traffic information and use the static shortest path algorithm. In this paper, we prosed the method to predict the traffic flow in the future. This prediction combines two methods. The former is an accumulated speed pattern, which means the analysis results for all past speeds of each road by classfying the same day and the same time inteval. The latter is the Kalman filter. We predicted the traffic flows of each segment by combining the two methods. By experiment, we showed our algorithm gave better precise predicition than only using accumulated speed pattern that is used commonly. The result can be applied to the car navigation to support a dynamic shortest path. In addition, it can give users the travel information to avoid the traffic congestion areas.

Early Prediction of Fine Dust Concentration in Seoul using Weather and Fine Dust Information (기상 및 미세먼지 정보를 활용한 서울시의 미세먼지 농도 조기 예측)

  • HanJoo Lee;Minkyu Jee;Hakdong Kim;Taeheul Jun;Cheongwon Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.285-292
    • /
    • 2023
  • Recently, the impact of fine dust on health has become a major topic. Fine dust is dangerous because it can penetrate the body and affect the respiratory system, without being filtered out by the mucous membrane in the nose. Since fine dust is directly related to the industry, it is practically impossible to completely remove it. Therefore, if the concentration of fine dust can be predicted in advance, pre-emptive measures can be taken to minimize its impact on the human body. Fine dust can travel over 600km in a day, so it not only affects neighboring areas, but also distant regions. In this paper, wind direction and speed data and a time series prediction model were used to predict the concentration of fine dust in Seoul, and the correlation between the concentration of fine dust in Seoul and the concentration in each region was confirmed. In addition, predictions were made using the concentration of fine dust in each region and in Seoul. The lowest MAE (mean absolute error) in the prediction results was 12.13, which was about 15.17% better than the MAE of 14.3 presented in previous studies.