• 제목/요약/키워드: Transverse vibration

검색결과 550건 처리시간 0.025초

전단변형(剪斷變形)과 회전관성(回轉慣性)을 고려(考慮)한 Timoshenko 보의 자유진동(自由振動) 해석(解析) (Free Vibration Analysis of a Degenerated Timoshenko Beam Including the Effect of Shear Deformation and Rotatory Inertia)

  • 변동균;신영식;장종탁
    • 대한토목학회논문집
    • /
    • 제3권4호
    • /
    • pp.109-122
    • /
    • 1983
  • 본(本) 연구(硏究)에서는 전단변형(剪斷變形)(Shear deformation)과 회전관성(回轉慣性)(Rotatory inertia)의 영향(影響)을 고려(考慮)한 4절점(節點) 8자유도(自由度)를 갖는 Timoshenko 보 요소(要素)(TB4)를 3차원(次元) 연속체(連續體)로부터 유도(誘導)하고 있다. TB4보 요소(要素)는 3차(次) 보간함수(補間凾數)(Interpolation function)로 표시(表示)되는 연직(鉛直)처짐(Transverse deflection) W와 평면회전(平面回轉)(Plane rotation) ${\theta}$를 절점(節點)의 자유도(自由度)로 취(取)하고 있다. TB4요소(要素)의 강도(剛度)매트릭스와 질량(質量)매트릭스는 보의 운동방정식(運動方程式)을 Galerkin 가중잔차법(加重殘差法)(Weighted residual method)으로 Discretization하여 3개(個)의 Gauss점(點)을 이용(利用)한 RSI(Reduced shear integration)기법(技法)에 의한 수치적분(數値積分)으로 구해진다. TB4보 요소(要素)의 정확성(正確性)과 수감상태(收歛狀態)를 고찰(考察)하기 위하여 여러 가지 예제(例題)를 해석(解析)한 결과(結果), 보의 L/h 비(比)에 관계없이 보의 정적해석(靜的解析)(Static analysis)이라 자유진동해석(自由振動解析)(Free vibration analysis)에 있어서 TB4보 요소(要素)는 다른 Timoshenko보 요소(要素)들 보다 월등(越等)히 우수(優秀)한 정확도(正確度)와 수감현상(收歛現象)을 보여 주고 있다.

  • PDF

An inverse approach for the calculation of flexibility coefficient of open-side cracks in beam type structures

  • Fallah, N.;Mousavi, M.
    • Structural Engineering and Mechanics
    • /
    • 제41권2호
    • /
    • pp.285-297
    • /
    • 2012
  • An inverse approach is presented for calculating the flexibility coefficient of open-side cracks in the cross sectional of beams. The cracked cross section is treated as a massless rotational spring which connects two segments of the beam. Based on the Euler-Bernoulli beam theory, the differential equation governing the forced vibration of each segment of the beam is written. By using a mathematical manipulation the time dependent differential equations are transformed into the static substitutes. The crack characteristics are then introduced to the solution of the differential equations via the boundary conditions. By having the time history of transverse response of an arbitrary location along the beam, the flexibility coefficient of crack is calculated. The method is applied for some cracked beams with solid rectangular cross sections and the results obtained are compared with the available data in literature. The comparison indicates that the predictions of the proposed method are in good agreement with the reported data. The procedure is quite general so as to it can be applicable for both single-side crack and double-side crack analogously. Hence, it is also applied for some test beams with double-side cracks.

유체를 이송하는 직선관의 진동 해석을 위한 새로운 비선형 모델링 (New Non-linear Modelling for Vibration Analysis of a Straight Pipe Conveying Fluid)

  • 이수일;정진태;임형빈
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.514-520
    • /
    • 2002
  • A new non-linear modelling of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the generalized-$\alpha$ time integration method to the non-linear discretized equations. The validity of the new modelling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by Paidoussis.

CPX 및 Pass-by 계측을 이용한 단독 주행 차량의 음향파워 평가 방법에 관한 연구 (A Study on the Evaluation Method of Sound Power for a Travelling Vehicle Using CPX and Pass-by Measurements)

  • 최태묵;문성호;서영국;김진형;김병희;배효준;지우진;조대승
    • 한국소음진동공학회논문집
    • /
    • 제16권11호
    • /
    • pp.1124-1131
    • /
    • 2006
  • This paper presents a novel method to determine sound power level(PWL) emitted by a travelling vehicle for road traffic noise simulation. The PWL is evaluated by the equivalent sound pressure level (SPL) measured by close proximity method and the sound power correction factor derived from the maximum SPL measured by pass-by method and the propagation attenuation of vehicle noise during the pass-by measurement. Using the method, we derive the empirical formula for PWL estimation in 1/1-octave and overall frequency bands for 8 vehicles (automobile, SUV, small truck, large bus, trailer, 3 dump trucks) tested at two road surfaces (dense graded asphalt, 30mm transverse tinning concrete) of Korean highway test road. The suggested approach, if securing sufficient data to represent the acoustic characteristics of all vehicle types, has il strong merit to be able to evaluate sound power levels for any combination of vehicle categories and traffic volumes.

유연체 로터-커플링-블레이드 시스템의 로터 축과 블레이드의 연성 진동에 관한 연구 (A Study on the Coupled Shaft-Torsional and Blade-Bending Vibrations in the Flexible Rotor-Coupling-Blade System)

  • 이선숙;오병영;윤형원;차석주;나성수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.221-226
    • /
    • 2005
  • In this paper, a dynamic model for the rotor shaft-coupling-blade system is developed. The blades are attached to a disk and driven by an electric motor shaft which is flexible in torsion. We assumed that the shaft torsional flexibility is lumped in the flexible coupling which is usually adopted in rotor systems. The Lagrangian approach with the small deformation theory for both blade-bending and shaft-torsional deformations is employed for developing the equation of the motion. The assumed modes method is used for estimating the blade transverse deflection. The numerical results highlight the effects of both structural damping of the system and the torsional stiffness of the flexible coupling to the dynamic response of the blade. The results showed strong coupling between the blade bending and shaft torsional vibrations in the form of inertial nonlinearif, stiffness hardening and softening.

  • PDF

위성체 유연 보 구조물의 열 안정성 해석 (Thermal Stability Analysis of a Flexible Beam Spacecraft Appendage)

  • 윤일성;송오섭
    • Composites Research
    • /
    • 제15권3호
    • /
    • pp.18-29
    • /
    • 2002
  • 본 논문에서는 얇은 벽보로 모델링 한 위성체 구조물에 입사되는 열 하중에 의해 발생하는 굽힘 진동과 열적 플러터에 대하여 연구하였다. 복합재료 얇은 벽보는 회전관성과 1차, 2차 와핑, 전단변형의 비고전적 요소를 포함한다. CUS구조물로 모델링한 복합재료 얇은 벽보의 열 진동 특성은 적층 순서와 섬유강화복합재료의 방향특성인자로부터 기인된 종방향 굽힘과 횡방향 굽힘의 언성과 관련하여 연구되었다. 수치 해석적인 방법으로 열적 플러터의 안정성 영역의경계값을 구하였으며, 태양 열 플럭스의 입사각, 감쇠계수, 섬유각의 변화에 의한 보의 변위를 구하였다. 주 구조물에 압전소자를 부착하여, 감지기와 작동기로 사용하여 제어해석을 수행하였다.

주행질량에 의한 불균일 단면보의 동적응답 (Dynamic Response of Non-uniform Beams under a Travelling Mass)

  • 김인우;이영신;이규섭;류봉조
    • 한국소음진동공학회논문집
    • /
    • 제11권5호
    • /
    • pp.140-147
    • /
    • 2001
  • In this paper, the dynamic response of non-uniform beams subjected to a travelling mass is investigated. Dynamic behaviors of flexible beam structures under a moving mass have been a concern in the design of bridges, ceiling crain in industry, as well as gun barrel fields. Most of studies for moving mass problems have been related to the theoretical dynamic responses of a simple beam model with uniform cross-sections. In some experimental studies, only a few transverse inertia effects due to travelling mass have been studied so far. The intended aim of the present Paper is to investigate the dynamic response of non-uniform beams taking into account of inertia force. centrifugal force, Coriollis force and self weight due to travelling mass. Galerkin's mode summation method is applied for the discretized equations of motion. Numerical results for the dynamic response of non-uniform beams under a travelling mass are demonstrated for various magnitudes and velocities of the travelling mass. In order to verify propriety of numerical solutions, experiments were conducted. Experimental resu1ts have a good agreement wish theoretical Predictions.

  • PDF

Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory

  • Adim, Belkacem;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.223-244
    • /
    • 2016
  • In this paper, a higher order shear and normal deformation theory is presented for functionally graded material (FGM) plates. By dividing the transverse displacement into bending, shear and thickness stretching parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The obtained results are compared with three-dimensional and quasi- three-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates.

Development of super convergent Euler finite elements for the analysis of sandwich beams with soft core

  • Sudhakar, V;Gopalkrishnan, S;Vijayaraju, K
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.657-678
    • /
    • 2018
  • Sandwich structures are well known for their use in aircraft, naval and automobile industries due to their high strength resistance with light weight and high energy absorption capability. Sandwich beams with soft core are very common and simple structures that are employed in day to day general use appliances. Modeling and analysis of sandwich structures is not straight forward due to the interactions between core and face sheets. In this paper, formulation of Super Convergent finite elements for analysis of the sandwich beams with soft core based on Euler Bernoulli beam theory are presented. Two elements, Eul4d with 4 degrees of freedom assuming rigid core in transverse direction and Eul10d with 10 degrees of freedom assuming the flexible core were developed are presented. The formulation considers the top, bottom face sheets and core as separate entities and are coupled by beam kinematics. The performance of these elements are validated by results available in the published literature. Number of studies are performed using the formulated elements in static, free vibration and wave propagation analysis involving various boundary and loading conditions. The paper highlights the advantages of the elements developed over the traditional elements for modeling of sandwich beams and, in particular wave propagation analysis.

Reduction of the actuator oscillations in the flying vehicle under a follower force

  • Kavianipour, O.;Khoshnood, A.M.;Sadati, S.H.
    • Structural Engineering and Mechanics
    • /
    • 제47권2호
    • /
    • pp.149-166
    • /
    • 2013
  • Flexible behaviors in new aerospace structures can lead to a degradation of their control and guidance system and undesired performance. The objectives of the current work are to analyze the vibration resulting from the propulsion force on a Single Stage to Orbit (SSTO) launch vehicle (LV). This is modeled as a follower force on a free-free Euler-Bernoulli beam consisting of two concentrated masses at the two free ends. Once the effects on the oscillation of the actuators are studied, a solution to reduce these oscillations will also be developed. To pursue this goal, the stability of the beam model is studied using Ritz method. It is determined that the transverse and rotary inertia of the concentrated masses cause a change in the critical follower force. A new dynamic model and an adaptive control system for an SSTO LV have been developed that allow the aerospace structure to run on its maximum bearable propulsion force with the optimum effects on the oscillation of its actuators. Simulation results show that such a control model provides an effective way to reduce the undesirable oscillations of the actuators.