• Title/Summary/Keyword: Transverse section

Search Result 402, Processing Time 0.026 seconds

Evaluation of Effective Section Area of Shear Steel in Reinforced Concrete Circular Columns (철근콘크리트 원형기둥의 전단철근 유효단면적 평가)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.81-88
    • /
    • 1999
  • In order to properly evaluate the shear strength of reinforced concrete circular columns due to the transverse shear reinforcement, the average of fractions of forces generated along the circular transverse hoops across the shear failure plane in the loading direction is calculated. For this, the center-to-center diameter of circular transverse hoops. spacing and the crack angle measured to the column longitudinal axis are considered. Using these variables, an equation representing the effective section area of circular transverse shear steel is proposed. The study result shows that the constant parameter. used for the calculation of the effective section area of circular hoops over the last 10 years, should not universally be applied any more. The use of the constant parameter may not seriously do harm to the evaluation of shear strength for circular columns with non-seismically designed transverse hoop reinforcement, since it gives slightly conservative results. However. for well-confined circular columns with close spacing or circular steel jacketing. it gives about 20% overestimation of the shear capacity contributed by the transverse hoop steel.

Effective Shear Strength of Circular Transverse Reinforcement in Reinforced Concrete Columns (철근콘크리트 기둥에서 원형전단철근의 유효전단강도)

  • 하태훈;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.271-276
    • /
    • 2002
  • Existing design equations generally overestimate the shear strength of the circular transverse reinforcement. This is due to the simplification of the discrete distribution of the reinforcement to the continuous one and the inappropriate application of the classical truss model to the circular section, which is different in shear-resisting component from the rectangular section. The present study introduces a new model considering the starting point of the diagonal crack, the number of transverse reinforcing bars crossing the crack and the effective strength component of the transverse resistance. This model leads to a simple design equation which is derived using the linear regression method and is in agreement with the lower bound of exact strength curve.

  • PDF

Transverse Shear Behavior of Thin-Walled Composite Beams Using a Mixed Method (혼합법을 이용한 박벽 복합재료 보의 전단변형거동 해석)

  • Park, Il-Ju;Jeong, Sung-Nam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.194-197
    • /
    • 2005
  • In this work, a mixed beam approach is performed to identify the transverse shear behavior of thin-walled composite beams with closed cross-sections. The analytical model includes the effects of elastic couplings, shell wall thickness, and torsion warping. The distributions of shear flow across the section as well as the shear correction coefficients are obtained in a closed form in the beam formulation. The influence of transverse shear deformation on the static behavior of closed cross-section composite beams is also investigated in the analysis

  • PDF

Deflection of battened beams with shear and discrete effects

  • Li, Ji-liang;Chen, Jian-kang
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.921-932
    • /
    • 2016
  • This paper presents a theoretical analysis for determining the transverse deflection of simply supported battened beams subjected to a uniformly distributed transverse quasi-static load. The analysis considers not only the shear effect but also the discrete effect of battens on the transverse deflection of the battened beam. The analytical solution is obtained using the principle of minimum potential energy. Numerical validation of the present analytical solution is accomplished using finite element methods. The present analytical solution shows that the shear effect on the transverse deflection of battened beams increases with the cross-section area of the main member but decreases with the cross-section area of the batten. The longer the battened beam is, or the larger the moment of inertia of the main member is, the smaller the shear effect will be.

Dynamic Response Analysis of Composite H-type Cross-section Beams (복합재료 H-형 단면 보의 동적응답 해석)

  • Kim, Sung-Kyun;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.583-592
    • /
    • 2010
  • Equations of motion of thin-walled composite H-type cross-section beams exposed to concentrated harmonic and non-harmonic time-dependent external excitations, incorporating a number of nonclassical effects of transverse shear, primary and secondary warping, and anisotropy of constituent materials are derived. The forced vibration response characteristics of a composite H-type cross-section beam exhibiting the circumferentially asymmetric stiffness(CAS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials.

Evaluation of Structural Performance of RC T-shaped Walls with Different ratios of axial load and vertical reinforcement (압축력비와 수직철근비에 따른 RC T형 벽체의 구조성능 평가에 관한 해석적 연구)

  • 하상수;최창식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.403-408
    • /
    • 2003
  • The objective of this study is to understand the variables affected the confinement for the transverse reinforcement of the reinforced concrete structural walls with the T-shaped cross section subjected to cyclic lateral loads. The structural performance of T-shaped walls was advanced by the transverse reinforcement which restrained the concrete subjected to compressive stress. If the arrangement of transverse reinforcement was not suitable for the confinement, T-shaped walls happened the brittle failure by web crushing or bucking of vertical reinforcement at the compression zone. It is necessary to confine transverse reinforcement in order to prevent the these failure. But the location of neutral axis and the magnitude of ultimate strain vary according to the section shape, a ratio of axial load, a ratio of wall cross sectional area to the floor-plan area, an aspect ratio and the reinforcement ratio. Therefore, the objective of this research is to grasp the location of neutral axis and the range which needs for the confinement of transverse reinforcement through the results of the sectional analysis which varies the ratio of axial load and the ratio of vertical reinforcement.

  • PDF

Ultimate Transverse Bending Strength Analysis of a SWATH Ship (SWATH선의 최종 횡굽힘강도 해석)

  • 박치모
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.103-112
    • /
    • 1992
  • The calculation method which takes into account the shear lag effects on the ultimate transverse bending moment of a SWATH(Small Waterplane Area Twin Hull) ship has been developed. In case of the ultimate bending strength analysis of conventional monohull ships and general box girder structures, the hypothesis that plane section remains plane after bending can be employed but not in the case of the structures having wide flange. For the ultimate bending strength analysis of such structures, a new method which can take into account the effect of shear lag on the ultimate bending strength has been developed by adopting more reasonable assumption that warping distortion of the section takes place inthe same way as the actual stress distribution. Finally, the proposed method has been applied to a a SWATH cross deck structure.

  • PDF

A study on the transverse shrinkage for the butt joint welding of plate (평판의 맞대기 이음 용접시의 가로수축에 관한 연구)

  • 이우수;왕지석
    • Journal of Welding and Joining
    • /
    • v.5 no.3
    • /
    • pp.46-52
    • /
    • 1987
  • The mechanism of transverse shrinkage for the butt joint weldig of plates is investigated in this paper. It was certified that the compressive plastic strain due to thermal expansion of materials during heating play an important role on the transverse shrinkage. It was also pointed out that the transverse shrinkage has to be treated with the samples of which the shapes are as close to real shapes of welded materials as possible, because the distribution of temperature and relative rigidity of materials during welding have great influence on the transverse shrinkage. The formulas for the calculation of transverse shrinkage were presented and the experiments were carried out in order to verify the formulas. the main results are as follows; 1. For the bead-on-plate welding, the transverse shrinkage in the begining parts of welding is the smallest, the end parts is next and the transverse shrinkage of mid section is the largest. 2. In bead-on-plate welding, the equations presented in this paper concerning transverse shrinkage coincide fairly well with the experimental values generally. 3. Transverse shrinkage increases generally as specific heat input per unit thickness increaes.

  • PDF

Natural Frequencies of Beams with Step Change in Cross-Section

  • Kim, Yong-Cheul;Nam, Alexander-V.
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.46-51
    • /
    • 2004
  • Natural frequencies of the transverse vibration of beams with step change in cross-section are obtained by using the asymptotic closed form solution. This closed form solution is found by using WKB method under the assumption of slowly varying properties, such as mass, cross-section, tension etc., along the beam length. However, this solution is found to be still very accurate even in the case of large variation in cross-section and tension. Therefore, this result can be easily applied to many engineering problems.

Evaluation of the Shear Strength Component by Circular Transverse Reinforcement in Reinforced Concrete Columns (철근콘크리트 기둥에서 원형전단철근에 의한 전단강도 산정)

  • 하태훈;홍성걸
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.982-988
    • /
    • 2002
  • Current design equations for shear strength of reinforced concrete columns generally overestimate the shear strength contribution by the circular transverse reinforcement. This is due to the simplification of the discrete distribution of the reinforcement to the continuous one and the imprudent application of the classical truss model to the circular section, which is different in shear-resisting mechanism from the rectangular section. This study presents a rational model for the prediction of shear strength contribution by the circular transverse reinforcement considering the starting location of a diagonal crack, the number of transverse reinforcing bars crossing the main crack and the geometrical strength component of the transverse resistance. It was found that, for lower amount transverse reinforcement, the crack starting point and the number of crack crossing bars greatly influence the shear-resisting capacity. Proposed model leads to a reliable design equation which is derived using a linear regression method and is in good agreement with the lower bound of exact strength curve.