• Title/Summary/Keyword: Transverse normal deformation

Search Result 64, Processing Time 0.022 seconds

A Numerical Study for Deformation Characteristics of the Wearing Surface on a Steel Plate Deck under Wheel Loads (윤하중을 받는 강바닥판 교면포장의 변형특성에 대한 수치해석적 연구)

  • Kim, Hae-Na-Rae;Ock, Chang-Kwon;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.439-447
    • /
    • 2011
  • Longitudinal cracks due to traffic truck loadings that are caused by local deformations of steel orthotropic bridge decks are sometimes observed in the wearing surface. So, underlying causes of the longitudinal pavement crack induced by structural behaviors of steel decks are investigated in this study. For this purpose, The rational finite element model of the steel deck and the pavement having the box girder is developed and a parametric study is performed by varying thickness or elastic modulus ratios of both the steel deck plate and the pavement. As a result, a large tensile strain above the webs of the u-rib and the box girder, which becomes the main cause of the cracks of the pavement, is detected from variation of the normal strain component of the wearing surface in the transverse direction.

Age-related Geometric Effects on the Human Lumbar Spine by the Finite Element Method (유한 요소법을 이용한 나이에 따른 척추의 형상 및 구조변화의 효과)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.285-293
    • /
    • 2000
  • Age-related changes in the geometry of human lumbar spine would lead to changes of its mechanical behaviors. To investigate the effects of the geometric changes, no age-related changes in the material/mechanical properties were considered. Using the finite element method. two age-related models of lumbar spine segments (L3-L4) were constructed. The annulus of the models was modeled as laminate composite elements with 16 layers and 6 materials. The spinal stiffness and facet reaction of the lumbar spine increased with the age-related geometric changes in various combined loadings. Fiber and transverse tensile strains of the inner annulus. cancellous bone stress and end-plate stress decreased with the age-related geometric changes whereas fiber/layer compressive strains of the annulus. facet reaction. ligament reaction and end-plate rigidity increased. Consequently, it appears that in the normal age-related deterioration of discs, the age-related geometric change contributes to the increase of spinal stiffness (the decrease in range of the motion segment), preventing an excessive deformation of the disc.

  • PDF

Effects of Pasternak foundation on the bending behavior of FG porous plates in hygrothermal environment

  • Bot, Ikram Kheira;Bousahla, Abdelmoumen Anis;Zemri, Amine;Sekkal, Mohamed;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, M.H.;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.821-837
    • /
    • 2022
  • This research is devoted to study the effects of humidity and temperature on the bending behavior of functionally graded (FG) ceramic-metal porous plates resting on Pasternak elastic foundation using a quasi-3D hyperbolic shear deformation theory developed recently. The present plate theory with only four unknowns, takes into account both transverse shear and normal deformations and satisfies the zero traction boundary conditions on the surfaces of the functionally graded plate without using shear correction factors. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. The governing differential equations are obtained using the "principle of virtual work". Analytically, the Navier method is used to solve the equations that govern a simply supported FG porous plate. The obtained results are checked by comparing the results determined for the perfect and imperfect FG plates with those available in the scientific literature. Effects due to material index, porosity factors, moisture and thermal loads, foundation rigidities, geometric ratios on the FG porous plate are all examined. Finally, this research will help us to design advanced functionally graded materials to ensure better durability and efficiency for hygro-thermal environments.

Evaluation of Seismic Performance of Prefabricated Bridge Piers with a Circular Solid Section (중실원형단면 조립식 교각의 내진 성능 평가)

  • Kim, Hyun-Ho;Shim, Chang-Su;Chung, Chul-Hun;Kim, Cheol-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.23-31
    • /
    • 2007
  • Fast bridge construction has been increasingly needed according to the changed construction environment. This paper deals with quasi-static tests on precast piers for bridge substructures. One of the most crucial aspect of the design of precast prestressed concrete bridge piers is the seismic performance. Seven precast pier elements were fabricated. The amount of prestressing bars, the prestressing force, and the location and number of the joint between segments were the main test parameters. Test results showed that the introduced axial prestress made the restoration of the deformation under small lateral displacement and minor damage. However, there was no effect of the prestress when the plastic hinge region was damaged severely due to large lateral displacement. Judging from the observed damage, the design of the joints in precast piers should be done for the first joint between the foundation and the pier segment. The amount of the necessary prestressing steel may be designed to satisfy the P-M diagram according to the service loads, not by having the same steel ratio as normal RC bridge piers. In order to satisfy the current required displacement ductility, it is necessary to have the same amount of the transverse reinforcements as RC piers. As the steel ratio increases, the energy absorption capacity increases. The number of joints showed a little influence on the energy absorption capacity.