• 제목/요약/키워드: Transverse Temperature Profile

검색결과 6건 처리시간 0.021초

열간압연공정에서의 스트립 폭방향온도 모니터링시스템 개발 (Measurement System of the Transverse Temperature Profile of Hot Rolled Strip)

  • 이성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.197-201
    • /
    • 2001
  • Output and cost efficiency in the production of hot-rolled strip depend to a large content on the uniformity of geometric and mechanical properties over the length and width of the rolled end product. To ensure the homogeneous temperatures required for this during the rolling process a system to measure and evaluate the transverse temperature profile was developed and implemented in production. The systems used consist of temperature scanners and computers for measurement and data evaluation. The systems have been installed in Kwangyang hot strip mills, in the cases at the exit of the finishing train and at the entry of the coiler. They are used in production to determine the effect of the finishing train and the cooling zone on the technological properties of the hot rolled strip.

  • PDF

Bending analysis of power-law sandwich FGM beams under thermal conditions

  • Garg, Aman;Belarbi, Mohamed-Ouejdi;Li, Li;Tounsi, Abdelouahed
    • Advances in aircraft and spacecraft science
    • /
    • 제9권3호
    • /
    • pp.243-261
    • /
    • 2022
  • Broad writing on the examination of sandwich structures mirrors the significance of incorporating thermal loadings during their investigation stage. In the current work, an endeavor has been made to concentrate on sandwich FGM beams' bending behaving under thermal loadings utilizing shear deformation theory. Temperature-dependent material properties are used during the analysis. The formulation includes the transverse displacement field, which helps better predict the behavior of thick FGM beams. Three-different thermal profiles across the thickness of the beam are assumed during the analysis. The study has been carried out on both symmetric and unsymmetric sandwich FGM beams. It has been observed that the bending behavior of sandwich FGM beams is impacted by the temperature profile to which it is subjected. Power-law exponent and thickness of core also affect the behavior of the beam.

Flexural analysis of thermally actuated fiber reinforced shape memory polymer composite

  • Tiwari, Nilesh;Shaikh, A.A.
    • Advances in materials Research
    • /
    • 제8권4호
    • /
    • pp.337-359
    • /
    • 2019
  • Shape Memory Polymer Composites (SMPC) have gained popularity over the last few decades due to its flexible shape memory behaviour over wide range of strains and temperatures. In this paper, non-linear bending analysis has been carried out for SMPC beam under the application of uniformly distributed transverse load (UDL). Simplified C0 continuity Finite Element Method (FEM) based on Higher Order Shear Deformation Theory (HSDT) has been adopted for flexural analysis of SMPC. The numerical solutions are obtained by iterative Newton Raphson method. Material properties of SMPC with Shape Memory Polymer (SMP) as matrix and carbon fibre as reinforcements, have been calculated by theory of volume averaging. Effect of temperature on SMPC has been evaluated for numerous parameters for instance number of layers, aspect ratio, boundary conditions, volume fraction of carbon fiber and laminate stacking orientation. Moreover, deflection profile over unit length and behavior of stresses across thickness are also presented to elaborate the effect of glass transition temperature (Tg). Present study provides detailed explanation on effect of different parameters on the bending of SMPC beam for large strain over a broad span of temperature from 273-373K, which encompasses glass transition region of SMPC.

Creep analysis of a rotating functionally graded simple blade: steady state analysis

  • Mirzaei, Manouchehr Mohammad Hosseini;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • 제33권3호
    • /
    • pp.463-472
    • /
    • 2019
  • Initial thermo-elastic and steady state creep deformation of a rotating functionally graded simple blade is studied using first-order shear deformation theory. A variable thickness model for cantilever beam has been considered. The blade geometry and loading are defined as functions of length so that one can define his own blade profile and loading using any arbitrary function. The blade is subjected to a transverse distributed load, an inertia body force due to rotation and a distributed temperature field due to a thermal gradient between the tip and the root. All mechanical and thermal properties except Poisson's ratio are assumed to be longitudinally variable based on the volume fraction of reinforcement. The creep behaviour is modelled by Norton's law. Considering creep strains in stress strain relation, Prandtl-Reuss relations, Norton' law and effective stress relation differential equation in term of effective creep strain is established. This differential equation is solved numerically. By effective creep strain, steady state stresses and deflections are obtained. It is concluded that reinforcement particle size and form of distribution of reinforcement has significant effect on the steady state creep behavior of the blade.

Free vibration analysis of FG plates under thermal environment via a simple 4-unknown HSDT

  • Attia, Amina;Berrabah, Amina Tahar;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.899-910
    • /
    • 2021
  • A 4-unknown shear deformation theory is applied to investigate the vibration of functionally graded plates under thermal environment. The plate is fabricated from a functionally graded material mixed of ceramic and metal with continuously varying material properties through the plate thickness. Three types of thermal loadings, uniform, linear and nonlinear temperature rises along the plate thickness are taken into account. The present theory contains four unknown functions as against five or more in other higher order shear deformation theories. The through-the-thickness distributions of transverse shear stresses of the plate are considered to vary parabolically and vanish at upper and lower surfaces. The present model does not require any problem dependent shear correction factor. Analytical solutions for the free vibration analysis are derived based on Fourier series that satisfy the boundary conditions (Navier's method). Benchmark solutions are firstly considered to evaluate the accuracy of the proposed model. Comparisons with the solutions available in literature revealed the good capabilities of the present model for the simulations of vibration responses of FG plates. Some parametric studies are carried out for the frequency analysis by varying the volume fraction profile and the temperature distribution across the plate thickness.

낙엽송재 내 수분의 내부이동 및 표면방사 평가 (Evaluation of Surface Emission and Internal Movement of Water in Japanese Larch Lumber)

  • 한연중;엄창득;김세종;강욱;박주생;박문재;여환명
    • Journal of the Korean Wood Science and Technology
    • /
    • 제35권4호
    • /
    • pp.1-8
    • /
    • 2007
  • 목재의 방향별 내부수분이동계수와 표면방사계수를 측정하기 위하여 2.5 (방사방향) ${\times}$ 2.5 (접선방향) ${\times}$ 2.5cm (섬유방향)의 낙엽송 정육면체 시편을 제작하였다. 수분이동방향과 직교하는 단면을 제외한 나머지 4면을 파라핀테이프와 고무테이프를 이용하여 코팅한 후, 70, 50, $30^{\circ}C$의 3가지 온도조건과 30, 60%의 2가지 상대습도 조건에서 건조시키면서, 목재 내부와 표면에서의 수분이동을 평가하였다. 자유수 유동과 결합수 및 수증기의 확산에 의한 내부수분이동계수는 고온조건에서 크게 나타났으며, 섬유방향이 횡단방향에 비하여 6배, 횡단방향에서는 방사방향이 접선방향에 비하여 1.2배 정도 큰 값을 보였다. 표면방사계수는 온도가 상승하고, 표면함수율이 감소함에 따라 증가하였다. 본 연구 결과를 이용하여 비평형상태에서 낙엽송재 내 함수율 분포변화와 증발수분량을 예측할 수 있으리라 기대된다.