Acknowledgement
Supported by : University of Kashan
References
- Almasi, A. (2015), "Modern guidelines and latest case studies on condition monitoring of rotating equipment", Austral. J. Mech. Eng., 13(3), 172-186. https://doi.org/10.1080/14484846.2015.1093228
- Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59, 345-359. https://doi.org/10.32604/cmc.2019.06641
- Arefi, M. and Zenkour, A. (2017a), "Electro-magneto-elastic analysis of a three-layer curved beam", Smart. Struct. Syst., Int. J., 19(6), 695-703. https://doi.org/10.12989/sss.2017.19.6.695
- Arefi, M. and Zenkour, A.M. (2017b), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B: Cond. Matt., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066
- Arefi, M. and Zenkour, A.M. (2017c), "Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezo-magnetic curved nanobeam", Acta. Mech., 228(10), 3657-3674. https://doi.org/10.1007/s00707-017-1892-6
- Arefi, M. and Zenkour, A.M. (2018a), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intell. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
- Arefi, M. and Zenkour, A.M. (2018b), "Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intell. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333
- Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field", Smart. Struct. Syst., Int. J., 9(5), 427-439. https://doi.org/10.12989/sss.2012.9.5.427
- Arefi, M., Faegh, R.K. and Loghman, A. (2016), "The effect of axially variable thermal and mechanical loads on the 2D thermoelastic response of FG cylindrical shell", J. Thermal Stresses, 39(12), 1539-1559. https://doi.org/10.1080/01495739.2016.1217178
- Arefi, M., Zamani, M.H. and Kiani, M. (2018), "Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak's foundation", J. Intell. Mater. Syst. Struct., 29(5), 774-786. https://doi.org/10.1177/1045389X17721039
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
- Chau-Dinh, T., Zi, G., Lee, P.-S., Rabczuk, T. and Song, J.-H. (2012), "Phantom-node method for shell models with arbitrary cracks", Comput. Struct., 92-93, 242-256. https://doi.org/10.1016/j.compstruc.2011.10.021
- Davoudi Kashkoli, M. and Nejad, M. (2018), "Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells", Steel Compos. Struct., Int. J., 28(3), 349-362. https://doi.org/10.12989/scs.2018.28.3.349
- Duy, H., Van, T. and Noh, H.-C. (2014), Eigen analysis of functionally graded beams with variable cross-section resting on elastic supports and elastic foundation", Struct. Eng. Mech., Int. J., 52, 1033-1049. https://doi.org/10.12989/sem.2014.52.5.1033
- Filippi, M., Carrera, E. and Zenkour, A.M. (2015), "Static analyses of FGM beams by various theories and finite elements", Compos. Part B: Eng., 72, 1-9. https://doi.org/10.1016/j.compositesb.2014.12.004
- Giunta, G., Belouettar, S. and Carrera, E. (2010), "Analysis of FGM Beams by Means of Classical and Advanced Theories", Mech. Adv. Mater. Struct.res, 17(8), 622-635. https://doi.org/10.1080/15376494.2010.518930
- Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2013), "A thermo-mechanical analysis of functionally graded beams via hierarchical modelling", Compos. Struct., 95, 676-690. https://doi.org/10.1016/j.compstruct.2012.08.013
- Golmakaniyoon, S. and Akhlaghi, F. (2016), "Time-dependent creep behavior of Al-SiC functionally graded beams under in-plane thermal loading", Computat. Mater. Sci., 121(Supplement C), 182-190. https://doi.org/10.1016/j.commatsci.2016.04.038
- Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate", Comput. Mater. Continua, 59(2), 433-456. https://doi.org/10.32604/cmc.2019.06660
- Gupta, V.K., Singh, S.B., Chandrawat, H.N. and Ray, S. (2004), "Steady state creep and material parameters in a rotating disc of Al-SiCP composite", Eur. J. Mech. - A/Solids, 23(2), 335-344. https://doi.org/10.1016/j.euromechsol.2003.11.005
- Hamdia, K.M., Ghasemi, H., Zhuang, X., Alajlan, N. and Rabczuk, T. (2018), "Sensitivity and uncertainty analysis for flexoelectric nanostructures", Comput. Methods Appl. Mech. Eng., 337, 95-109. https://doi.org/10.1016/j.cma.2018.03.016
- Hamdia, K.M., Silani, M., Zhuang, X., He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions", Int. J. Fracture, 206(2), 215-227. https://doi.org/10.1007/s10704-017-0210-6
- Jafari Fesharaki, J., Loghman, A., Yazdipoor, M. and Golabi, S. (2014), "Semi-analytical solution of time-dependent thermomechanical creep behavior of FGM hollow spheres", Mech. Time-Depend. Mater., 18(1), 41-53. https://doi.org/10.1007/s11043-013-9212-6
- Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
- Kapania, R.K. and Raciti, S. (1989), "Recent advances in analysis of laminated beams and plates. Part I - Sheareffects and buckling", AIAA Journal, 27(7), 923-935. https://doi.org/10.2514/3.10202
- Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6(3), 229-238. https://doi.org/10.1007/s10999-010-9132-4
- Kordkheili, S.A.H. and Naghdabadi, R. (2007), "Thermoelastic analysis of a functionally graded rotating disk", Compos. Struct., 79(4), 508-516. https://doi.org/10.1016/j.compstruct.2006.02.010
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
-
Loghman, A. and Wahab, M.A. (1996), "Creep damage simulation of thick-walled tubes using the
${\Theta}$ projection concept", Int. J. Press. Vessels Pip., 67(1), 105-111. https://doi.org/10.1016/0308-0161(94)00175-8 - Loghman, A., Ghorbanpour Arani, A. and Aleayoub, S.M.A. (2011), "Time-dependent creep stress redistribution analysis of thick-walled functionally graded spheres", Mech. Time-Depend. Mater., 15(4), 353-365. https://doi.org/10.1007/s11043-011-9147-8
- Loghman, A., Faegh, R. and Arefi, M. (2017a), "Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory", Steel Compos. Struct., Int. J., 26(5), 533-547. https://doi.org/10.12989/scs.2018.26.5.533
- Loghman, A., Hammami, M. and Loghman, E. (2017b), "Effect of the silicon-carbide micro- and nanoparticle size on the thermo-elastic and time-dependent creep response of a rotating Al-SiC composite cylinder", J. Appl. Mech. Tech. Phys., 58(3), 443-453. https://doi.org/10.1134/S0021894417030099
- Mendelson, A. (1968), Plasticity Theory and Applications, The Macmillan Company.
- Mirsky, I. (1959), "Axially symmetric motions of thick cylindrical shells", 25, 97-102. https://doi.org/10.1115/1.4011695
- Nguyen, T.-K., Vo, T.P. and Thai, H.-T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B: Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011
- Niknam, H., Fallah, A. and Aghdam, M.M. (2014), "Nonlinear bending of functionally graded tapered beams subjected to thermal and mechanical loading", Int. J. Non-Linear Mech., 65(Supplement C), 141-147. https://doi.org/10.1016/j.ijnonlinmec.2014.05.011
- Oh, Y. and Yoo, H.H. (2016), "Vibration analysis of rotating pretwisted tapered blades made of functionally graded materials", Int. J. Mech. Sci., 119(Supplement C), 68-79. https://doi.org/10.1016/j.ijmecsci.2016.10.002
- Pandey, A.B., Mishra, R.S. and Mahajan, Y.R. (1993), "Creep fracture in Al-SiC metal-matrix composites", J. Mater. Sci., 28(11), 2943-2949. https://doi.org/10.1007/BF00354697
- Rao, J.S. and Vyas, N.S. (1996), "Determination of blade stresses under constant speed and transient conditions with nonlinear damping", J. Eng. Gas Turbines Power, 118(2), 424-433. https://doi.org/10.1115/1.2816607
- Roy, P.A. and Meguid, S.A. (2018), "Analytical modeling of the coupled nonlinear free vibration response of a rotating blade in a gas turbine engine", Acta Mechanica, 229(8), 3355-3373. https://doi.org/10.1007/s00707-018-2165-8
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
- Sankar, B.V. and Tzeng, J.T. (2002), "Thermal stresses in functionally graded beams", AIAA Journal, 40(6), 1228-1232. https://doi.org/10.2514/2.1775
- Sapountzakis, E.J. and Panagos, D.G. (2008), "Shear deformation effect in non-linear analysis of composite beams of variable cross section", Int. J. Non-Linear Mech., 43(7), 660-682. https://doi.org/10.1016/j.ijnonlinmec.2008.03.005
- Shi, G., Lam, K.Y. and Tay, T.E. (1998), "On efficient finite element modeling of composite beams and plates using higher-order theories and an accurate composite beam element", Compos. Struct., 41(2), 159-165. https://doi.org/10.1016/S0263-8223(98)00050-6
- Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Software, 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005
- Xu, Y. and Zhou, D. (2012), "Two-dimensional thermoelastic analysis of beams with variable thickness subjected to thermo-mechanical loads", Appl. Math. Model., 36(12), 5818-5829. https://doi.org/10.1016/j.apm.2012.01.048
- Zappino, E., Viglietti, A. and Carrera, E. (2018), "Analysis of tapered composite structures using a refined beam theory", Compos. Struct., 183, 42-52. https://doi.org/10.1016/j.compstruct.2017.01.009
Cited by
- Lower bound estimate for buckling in axially graded cantilever rods vol.2, pp.3, 2019, https://doi.org/10.1088/2631-8695/abb4f1
- Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent vol.38, pp.4, 2021, https://doi.org/10.12989/scs.2021.38.4.355
- Effect of gravity on a magneto-thermoelastic porous medium with the frame of a memory-dependent derivative in the context of the 3PHL model vol.40, pp.6, 2019, https://doi.org/10.12989/scs.2021.40.6.881