DOI QR코드

DOI QR Code

Creep analysis of a rotating functionally graded simple blade: steady state analysis

  • Mirzaei, Manouchehr Mohammad Hosseini (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Arefi, Mohammad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Loghman, Abbas (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2019.05.07
  • Accepted : 2019.10.25
  • Published : 2019.11.10

Abstract

Initial thermo-elastic and steady state creep deformation of a rotating functionally graded simple blade is studied using first-order shear deformation theory. A variable thickness model for cantilever beam has been considered. The blade geometry and loading are defined as functions of length so that one can define his own blade profile and loading using any arbitrary function. The blade is subjected to a transverse distributed load, an inertia body force due to rotation and a distributed temperature field due to a thermal gradient between the tip and the root. All mechanical and thermal properties except Poisson's ratio are assumed to be longitudinally variable based on the volume fraction of reinforcement. The creep behaviour is modelled by Norton's law. Considering creep strains in stress strain relation, Prandtl-Reuss relations, Norton' law and effective stress relation differential equation in term of effective creep strain is established. This differential equation is solved numerically. By effective creep strain, steady state stresses and deflections are obtained. It is concluded that reinforcement particle size and form of distribution of reinforcement has significant effect on the steady state creep behavior of the blade.

Keywords

Acknowledgement

Supported by : University of Kashan

References

  1. Almasi, A. (2015), "Modern guidelines and latest case studies on condition monitoring of rotating equipment", Austral. J. Mech. Eng., 13(3), 172-186. https://doi.org/10.1080/14484846.2015.1093228
  2. Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59, 345-359. https://doi.org/10.32604/cmc.2019.06641
  3. Arefi, M. and Zenkour, A. (2017a), "Electro-magneto-elastic analysis of a three-layer curved beam", Smart. Struct. Syst., Int. J., 19(6), 695-703. https://doi.org/10.12989/sss.2017.19.6.695
  4. Arefi, M. and Zenkour, A.M. (2017b), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B: Cond. Matt., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066
  5. Arefi, M. and Zenkour, A.M. (2017c), "Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezo-magnetic curved nanobeam", Acta. Mech., 228(10), 3657-3674. https://doi.org/10.1007/s00707-017-1892-6
  6. Arefi, M. and Zenkour, A.M. (2018a), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intell. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
  7. Arefi, M. and Zenkour, A.M. (2018b), "Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intell. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333
  8. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2012), "Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field", Smart. Struct. Syst., Int. J., 9(5), 427-439. https://doi.org/10.12989/sss.2012.9.5.427
  9. Arefi, M., Faegh, R.K. and Loghman, A. (2016), "The effect of axially variable thermal and mechanical loads on the 2D thermoelastic response of FG cylindrical shell", J. Thermal Stresses, 39(12), 1539-1559. https://doi.org/10.1080/01495739.2016.1217178
  10. Arefi, M., Zamani, M.H. and Kiani, M. (2018), "Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak's foundation", J. Intell. Mater. Syst. Struct., 29(5), 774-786. https://doi.org/10.1177/1045389X17721039
  11. Chakraborty, A., Gopalakrishnan, S. and Reddy, J.N. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
  12. Chau-Dinh, T., Zi, G., Lee, P.-S., Rabczuk, T. and Song, J.-H. (2012), "Phantom-node method for shell models with arbitrary cracks", Comput. Struct., 92-93, 242-256. https://doi.org/10.1016/j.compstruc.2011.10.021
  13. Davoudi Kashkoli, M. and Nejad, M. (2018), "Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells", Steel Compos. Struct., Int. J., 28(3), 349-362. https://doi.org/10.12989/scs.2018.28.3.349
  14. Duy, H., Van, T. and Noh, H.-C. (2014), Eigen analysis of functionally graded beams with variable cross-section resting on elastic supports and elastic foundation", Struct. Eng. Mech., Int. J., 52, 1033-1049. https://doi.org/10.12989/sem.2014.52.5.1033
  15. Filippi, M., Carrera, E. and Zenkour, A.M. (2015), "Static analyses of FGM beams by various theories and finite elements", Compos. Part B: Eng., 72, 1-9. https://doi.org/10.1016/j.compositesb.2014.12.004
  16. Giunta, G., Belouettar, S. and Carrera, E. (2010), "Analysis of FGM Beams by Means of Classical and Advanced Theories", Mech. Adv. Mater. Struct.res, 17(8), 622-635. https://doi.org/10.1080/15376494.2010.518930
  17. Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2013), "A thermo-mechanical analysis of functionally graded beams via hierarchical modelling", Compos. Struct., 95, 676-690. https://doi.org/10.1016/j.compstruct.2012.08.013
  18. Golmakaniyoon, S. and Akhlaghi, F. (2016), "Time-dependent creep behavior of Al-SiC functionally graded beams under in-plane thermal loading", Computat. Mater. Sci., 121(Supplement C), 182-190. https://doi.org/10.1016/j.commatsci.2016.04.038
  19. Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate", Comput. Mater. Continua, 59(2), 433-456. https://doi.org/10.32604/cmc.2019.06660
  20. Gupta, V.K., Singh, S.B., Chandrawat, H.N. and Ray, S. (2004), "Steady state creep and material parameters in a rotating disc of Al-SiCP composite", Eur. J. Mech. - A/Solids, 23(2), 335-344. https://doi.org/10.1016/j.euromechsol.2003.11.005
  21. Hamdia, K.M., Ghasemi, H., Zhuang, X., Alajlan, N. and Rabczuk, T. (2018), "Sensitivity and uncertainty analysis for flexoelectric nanostructures", Comput. Methods Appl. Mech. Eng., 337, 95-109. https://doi.org/10.1016/j.cma.2018.03.016
  22. Hamdia, K.M., Silani, M., Zhuang, X., He, P. and Rabczuk, T. (2017), "Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions", Int. J. Fracture, 206(2), 215-227. https://doi.org/10.1007/s10704-017-0210-6
  23. Jafari Fesharaki, J., Loghman, A., Yazdipoor, M. and Golabi, S. (2014), "Semi-analytical solution of time-dependent thermomechanical creep behavior of FGM hollow spheres", Mech. Time-Depend. Mater., 18(1), 41-53. https://doi.org/10.1007/s11043-013-9212-6
  24. Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation theory", Appl. Math. Model., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
  25. Kapania, R.K. and Raciti, S. (1989), "Recent advances in analysis of laminated beams and plates. Part I - Sheareffects and buckling", AIAA Journal, 27(7), 923-935. https://doi.org/10.2514/3.10202
  26. Kiani, Y. and Eslami, M.R. (2010), "Thermal buckling analysis of functionally graded material beams", Int. J. Mech. Mater. Des., 6(3), 229-238. https://doi.org/10.1007/s10999-010-9132-4
  27. Kordkheili, S.A.H. and Naghdabadi, R. (2007), "Thermoelastic analysis of a functionally graded rotating disk", Compos. Struct., 79(4), 508-516. https://doi.org/10.1016/j.compstruct.2006.02.010
  28. Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4), 1210-1229. https://doi.org/10.1016/j.jsv.2008.04.056
  29. Loghman, A. and Wahab, M.A. (1996), "Creep damage simulation of thick-walled tubes using the ${\Theta}$ projection concept", Int. J. Press. Vessels Pip., 67(1), 105-111. https://doi.org/10.1016/0308-0161(94)00175-8
  30. Loghman, A., Ghorbanpour Arani, A. and Aleayoub, S.M.A. (2011), "Time-dependent creep stress redistribution analysis of thick-walled functionally graded spheres", Mech. Time-Depend. Mater., 15(4), 353-365. https://doi.org/10.1007/s11043-011-9147-8
  31. Loghman, A., Faegh, R. and Arefi, M. (2017a), "Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory", Steel Compos. Struct., Int. J., 26(5), 533-547. https://doi.org/10.12989/scs.2018.26.5.533
  32. Loghman, A., Hammami, M. and Loghman, E. (2017b), "Effect of the silicon-carbide micro- and nanoparticle size on the thermo-elastic and time-dependent creep response of a rotating Al-SiC composite cylinder", J. Appl. Mech. Tech. Phys., 58(3), 443-453. https://doi.org/10.1134/S0021894417030099
  33. Mendelson, A. (1968), Plasticity Theory and Applications, The Macmillan Company.
  34. Mirsky, I. (1959), "Axially symmetric motions of thick cylindrical shells", 25, 97-102. https://doi.org/10.1115/1.4011695
  35. Nguyen, T.-K., Vo, T.P. and Thai, H.-T. (2013), "Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory", Compos. Part B: Eng., 55, 147-157. https://doi.org/10.1016/j.compositesb.2013.06.011
  36. Niknam, H., Fallah, A. and Aghdam, M.M. (2014), "Nonlinear bending of functionally graded tapered beams subjected to thermal and mechanical loading", Int. J. Non-Linear Mech., 65(Supplement C), 141-147. https://doi.org/10.1016/j.ijnonlinmec.2014.05.011
  37. Oh, Y. and Yoo, H.H. (2016), "Vibration analysis of rotating pretwisted tapered blades made of functionally graded materials", Int. J. Mech. Sci., 119(Supplement C), 68-79. https://doi.org/10.1016/j.ijmecsci.2016.10.002
  38. Pandey, A.B., Mishra, R.S. and Mahajan, Y.R. (1993), "Creep fracture in Al-SiC metal-matrix composites", J. Mater. Sci., 28(11), 2943-2949. https://doi.org/10.1007/BF00354697
  39. Rao, J.S. and Vyas, N.S. (1996), "Determination of blade stresses under constant speed and transient conditions with nonlinear damping", J. Eng. Gas Turbines Power, 118(2), 424-433. https://doi.org/10.1115/1.2816607
  40. Roy, P.A. and Meguid, S.A. (2018), "Analytical modeling of the coupled nonlinear free vibration response of a rotating blade in a gas turbine engine", Acta Mechanica, 229(8), 3355-3373. https://doi.org/10.1007/s00707-018-2165-8
  41. Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
  42. Sankar, B.V. and Tzeng, J.T. (2002), "Thermal stresses in functionally graded beams", AIAA Journal, 40(6), 1228-1232. https://doi.org/10.2514/2.1775
  43. Sapountzakis, E.J. and Panagos, D.G. (2008), "Shear deformation effect in non-linear analysis of composite beams of variable cross section", Int. J. Non-Linear Mech., 43(7), 660-682. https://doi.org/10.1016/j.ijnonlinmec.2008.03.005
  44. Shi, G., Lam, K.Y. and Tay, T.E. (1998), "On efficient finite element modeling of composite beams and plates using higher-order theories and an accurate composite beam element", Compos. Struct., 41(2), 159-165. https://doi.org/10.1016/S0263-8223(98)00050-6
  45. Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Software, 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005
  46. Xu, Y. and Zhou, D. (2012), "Two-dimensional thermoelastic analysis of beams with variable thickness subjected to thermo-mechanical loads", Appl. Math. Model., 36(12), 5818-5829. https://doi.org/10.1016/j.apm.2012.01.048
  47. Zappino, E., Viglietti, A. and Carrera, E. (2018), "Analysis of tapered composite structures using a refined beam theory", Compos. Struct., 183, 42-52. https://doi.org/10.1016/j.compstruct.2017.01.009

Cited by

  1. Lower bound estimate for buckling in axially graded cantilever rods vol.2, pp.3, 2019, https://doi.org/10.1088/2631-8695/abb4f1
  2. Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent vol.38, pp.4, 2021, https://doi.org/10.12989/scs.2021.38.4.355
  3. Effect of gravity on a magneto-thermoelastic porous medium with the frame of a memory-dependent derivative in the context of the 3PHL model vol.40, pp.6, 2019, https://doi.org/10.12989/scs.2021.40.6.881