• Title/Summary/Keyword: Transverse Rupture Strength

Search Result 48, Processing Time 0.024 seconds

Sintering behavior of Fe-(Mo-Mn-P)-xSi alloys according to the Green Density (Fe-(Mo-Mn-P)-xSi계 합금의 성형밀도에 따른 소결거동)

  • Jung, Woo-Young;Ok, Jin-Uk;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.400-405
    • /
    • 2017
  • The addition of a large amount of alloying elements reduces the compactibility and increases the compacting pressure, thereby shortening the life of the compacting die and increasing the process cost of commercial PM steel. In this study, the characteristic changes of Fe-Mo-P, Fe-Mn-P, and Fe-Mo-Mn-P alloys are investigated according to the Si contents to replace the expensive elements, such as Ni. All compacts with different Si contents are fabricated with the same green densities of 7.0 and $7.2g/cm^3$. The transverse rupture strength (TRS) and sintered density are measured using the specimens obtained through the sintering process. The sintered density tends to decrease, whereas the TRS increases as the Si content increases. The TRS of the sintered specimen compacted with $7.2g/cm^3$ is twice as high as that compacted with $7.0g/cm^3$.

Study on the Sintering, Repressing and Mechanical Properties of Al2O3 and Al-Cu-SiC Composites (Al2O3와 SiC 강화재가 첨가된 Al-Cu 기지 복합재료의 소결, 재압축 및 기계적 특성에 관한 연구)

  • 박정수;이성규;안재환;정형식
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.171-178
    • /
    • 2004
  • Effects of liquid phase and reinforcing particle morphology on the sintering of Al-6 wt%Cu-10 vol% $Al_2O_3$ or SiC particles were studied in regards to densification, structure and transverse rupture properties. The Al-Cu liquid phase penetrated the boundaries between the aluminum matrix powders and the interfaces with reinforcing particles as well, indicating a good wettability to the powders. This enhanced the densification during sintering and the resulting strength and ductility. Since most of the copper added, however, was dissolved in the liquid phase and formed a brittle $CuAl_2$ phase upon cooling rather than alloyed with the aluminum matrix, the strengthening effect by the copper was not fully realized. Reinforcing particles of agglomerate type were found less suitable for the liquid phase sintering than solid type particles. $Al_2O_3$ and SiC particles protluced little difference on the sintering behavior but their size had a large effect. Repressing of the sintered composites increased density and bending properties but caused debonding at the matrix-particle interfaces and also fracturing of the particles.

Fabrication and Mechanical Properties of Powder Metallurgical High Speed Steels with Various Co Contents (Co 함량이 다른 분말고속도공구강의 제조 및 기계적 특성)

  • 홍성현;배종수;김용진
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.303-306
    • /
    • 2002
  • P/M high speed steels with various Co contents were fabricated by gas atomization and Canning/HIP process. As Co content in P/M high speed steel increased, hardness, transverse rupture strength and yield strength in compressive testing increased due to solid solution hardening of Co in matrix. Especially, PM high speed steels with Co have high deformation resistance to repeated compressive loading.

Densification Behavior of Mechanically Alloyed NiAl Powder Compact during Spark-plasma Sintering and its Mechanical Property

  • Kim, Ji-Soon;Jung, Soon-Ho;Jang, Young-Il;Kwon, Young-Soon
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.172-175
    • /
    • 2003
  • Mechanically-alloyed NiAl powder was sintered by Spark-Plasma Sintering (SPS) process. Densification and behavior mechanical property were determined from the experimental results and analysis ,such as changes in linear shrinkage, shrinkage rate, microstructure, and phase during sintering process, Victors hardness, and transver.ie-rupture-strength (TRS). Above 97% relative density was obtained after sintering at 115$0^{\circ}C$ for 5 min. Crystallite size determined by the Scherrer method was approximately 50 nm. From the X-ray diffraction analysis it was confirmed that the sintered bodies were composed mainly of NiAl phase together with Ni$_3$Al phase. Measured Vickers hardness and TRS value were 555$\pm$10 $H_v$ and 1393$\pm$75 MPa , respectively.

Effects of Coating Parameters on Transverse Rupture Strength of Cemented Carbide Coated with Titanium Carbide by CVD Process (화학연착(CVD) 법에 의한 TiC 연착 시 연착 여건이 피복 길경합금의 항면력에 미치는 영향)

  • 이건우;오재현;이주운
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.2
    • /
    • pp.80-87
    • /
    • 1991
  • Investigations have been made in order to improve the toughness of TiC coated Cemented Carbide tools by CVD. The effects of coating parameters on TiC layer and eta phase and the effects of the thickness of TiC Coated layer and eta phase on TRS were studied.

  • PDF

The Evaluation of Mechanical Property of WC-8%Co Alloys by Coercive Force and Magnetic Saturation (항자력과 자기포화도에 의한 WC-8%Co 초경합금의 기계적 성질 평가)

  • Ahn, Dong-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.438-444
    • /
    • 2000
  • The prediction of mechanical properties for WC-Co alloys by evaluation of coercive force and magnetic saturation were studied in relation to their microstructure. The WC-8%Co alloys were prepared using different WC particle size, carbon content and various sintering temperature by PM process. The magnetic properties such as coercive force and magnetic saturation of sintered WC-Co alloys were critically dependent upon their final composition and microstructure. Slight changes of carbon contents and small variation of WC grain size result in marked changes of magnetic properties, hardness and transverse rupture strength of sintered WC-Co alloys. It was found that the coercive force and hardness were increased by fine WC grain size of sinterd alloys, and the coercive force was proportional to hardness. With decreasing total carbon content below the stoichiometric value in WC-8%Co alloys the volume fraction of $\eta$ phase increased steadily, while the magnetic saturation and transverse rupture strength decreased. The magnetic saturation was inversely proportional to the coercive force of WC-Co alloys.

  • PDF

Quantitative Analysis of Roughness of Powder Surface Using Three-Dimensional Laser Profiler and its Effect on Green Strength of Powder Compacts (분말 표면 조도의 3차원 레이저 분석기를 이용한 정량화와 압분성형체 강도에 미치는 영향 분석)

  • Lee, Dong-Jun;Yoon, Eun-Yoo;Kim, Ha-Neul;Kang, Hee-Soo;Lee, Eon-Sik;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.406-410
    • /
    • 2011
  • Green strength is an important property of powders since high green strength guarantees easy and safe handling before sintering. The green strength of a powder compact is related to mainly mechanical and surface characters, governed by interlocking of the particles. In this study, the effect of powder surface roughness on the green strength of iron powders was investigated using a transverse rupture test. Three-dimensional laser profiler was employed for quantitative analyses of the surface roughness. Two different surface conditions, i.e. surface roughness, of powders were compared. The powders having rough surfaces show higher green strength than the round surface powders since higher roughness leads increasing interlocked area between the contacting powders.

The Effects of Si or Sn on the Sintered Properties of Fe-(Mo,Mn)-P Lean alloy (Fe-(Mo,Mn)-P계 Lean alloy의 소결특성에 미치는 Si와 Sn의 영향)

  • Jung, Woo-Young;Ok, Jin-Uk;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.302-308
    • /
    • 2018
  • A lean alloy is defined as a low alloy steel that minimizes the content of the alloying elements, while maintaining the characteristics of the sintered alloy. The purpose of this study is to determine the change in microstructure and mechanical properties due to the addition of silicon or tin in Fe-Mo-P, Fe-Mn-P, and Fe-Mo-Mn-P alloys. Silicon- or tin-added F-Mo-P, Fe-Mn-P, and Fe-Mo-Mn-P master alloys were compacted at 700 MPa and subsequently sintered under a $H_2-N_2$ atmosphere at $1120^{\circ}C$. The sintered density of three alloy systems decreases under the same compacting pressure due to dimensional expansion with increasing Si content. As the diffusion rate in the Fe-P-Mo system is higher than that in the Fe-P-Mn system, the decrease in the sintered density is the largest in the Fe-P-Mn system. The sintered density of Sn added alloys does not change with the increasing Sn content due to the effect of non-dimensional changes. However, the effect of Si addition on the transverse rupture strengthening enhancement is stronger than that of Sn addition in these lean alloys.

A Study on Microstructure and Mechanical Properties of TiC/Steel Composites Fabricated by Powder Metallurgy Process (분말야금공정으로 제조된 TiC/steel 금속복합재료의 미세조직 및 기계적 물성 연구)

  • Lee, Jihye;Cho, Seungchan;Kwon, Hansang;Lee, Sang-Kwan;Lee, Sang-Bok;Kim, Daeha;Kim, Junghwan
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.311-316
    • /
    • 2021
  • In this study, TiC/steel metal matrix composites were fabricated by powder metallurgy process using Fealloy powders with 3 wt.% Cr and 10 wt.% Cr, respectively, as matrix material. Subsequently, the composite samples were heat treated by the annealing and quenching-tempering(Q-T), respectively, to understand the effect of heat treatment on the mechanical properties of the composites. The correlation between microstructure and structural strength depending on the chromium content and the heat treatment conditions was studied through tensile, compressive, and transverse rupture test and microstructural analysis. In the case of TiC/steel composite containing 10 wt.% Cr, the tensile strength and transverse rupture strength at room temperature were significantly lowered by the influence of coarse chromium carbide formed at the TiC/steel interface. On the other hand, both TiC/steel composites containing 3 wt.% Cr and 10 wt.% Cr showed much higher compressive strength of about 4 GP after quenching-tempering compared to the annealed specimens regardless of the presence of the chromium carbide.

Effect of cold rolling on the microstructures of TiNi/6061Al smart composites. (TiNi/6061Al 지적 복합재료의 미세조직에 미치는 냉간압연의 영향.)

  • 박성기;신순기;이준희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.127-130
    • /
    • 2002
  • The 2.5 vol% TiNi/6061Al composites were fabricated by permanent mold casting, and its microstructures and tensile test for the cold rolled composites with maximum 50% reduction ratio were investigated. In the case of TiNi fiber with 2mm interval in preform, the interface bonding of fabricated composites were good. EPMA analysis results were found the small amount of Mg, Si segregated interface of diffusion layer. Transverse section of TiNi fiber was decreased with increasing reduction ratio and 40% reduction ratio was observed microcrack from TiNi fiber. And the tensile strength of composites at 38% reduction ratio was 194MPa. In the case of over 38% reduction ratio, the decrease of the tensile strength was due to TiNi fiber rupture by excess working. The fracture mode was appeared brittle fracture with increasing reduction ratio

  • PDF