• Title/Summary/Keyword: Transverse Motion

Search Result 370, Processing Time 0.025 seconds

A new first shear deformation beam theory based on neutral surface position for functionally graded beams

  • Bouremana, Mohammed;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Kaci, Abdelhakim;Bedia, El Abbas Adda
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.467-479
    • /
    • 2013
  • In this paper, a new first-order shear deformation beam theory based on neutral surface position is developed for bending and free vibration analysis of functionally graded beams. The proposed theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The neutral surface position for a functionally graded beam which its material properties vary in the thickness direction is determined. Based on the present new first-order shear deformation beam theory and the neutral surface concept together with Hamilton's principle, the motion equations are derived. To examine accuracy of the present formulation, several comparison studies are investigated. Furthermore, the effects of different parameters of the beam on the bending and free vibration responses of functionally graded beam are discussed.

An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • In this paper an efficient and simple refined shear deformation theory is presented for the free vibration of Functionally Graded Plates Under Various Boundary Conditions. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns of present theory is four, as against five in other shear deformation theories. The plates are considered of the type having two opposite sides simply-supported, and the two other sides having combinations of simply-supported, clamped, and free boundary conditions. The mechanical properties of functionally graded material are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived using Hamilton's principle. The results of this theory are compared with those of other shear deformation theories. Various numerical results including the effect of boundary conditions, power-law index, plate aspect ratio, and side-to-thickness ratio on the free vibration of FGM plates are presented.

Knee Joint Moment during Golf Swing, Drop-landing, and Cutting Maneuver (골프스윙, 드롭랜딩, 컷팅 동작 시 슬관절 모멘트 분석)

  • Kim, Ki-Hyun;Lim, Young-Tae;Park, Jun-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.296-302
    • /
    • 2020
  • The purpose of this study was to assess knee joint loading in the target knee during a golf swing compared to loading rates of high impact activities such as cutting and drop landings. Nine healthy competitive golfers completed golf swings with the target foot both straight and externally rotated 30 degrees, as well as drop landings and cutting maneuvers. Motion capture data was collected at 240 Hz and ground reaction force data was collected at 2400 Hz. The frontal and transverse knee moments were examined using repeated measures ANOVA through SPSS. The abduction moments were higher in golf swings as compared to the other high impact activities (p=.010), while the external rotation moments were lower (p=.003). There were no significant differences between externally rotated and neutral golf swings. These results suggest moments applied to the knee during a golf swing are similar to those applied during a high impact activity.

FEM Analysis on the Characteristics of Piezoelectric Ceramics Using $L_{1}-B_{4}$ Vibration mode ($L_{1}-B_{4}$ 진동모드를 이용하는 압전 세라믹스의 유한요소 해석)

  • 김범진;정동석;김태열;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.393-397
    • /
    • 2001
  • A linear ultrasonic motor was designed by a combination of the first longitudinal and fourth bending mode, the motor consisted of a straight aluminum alloys bar bonded with a piezoelectric ceramics element as a driving element. That is, L$_1$-B$_4$ linear ultrasonic motor can be constructed using a multi-mode vibrator of longitudinal and bending modes. The simulation with variation of material characteristics of piezoceramic were performed as use of finite element analysis ANSYS 5.5, such as elastic compliance, piezoelectric constant, electro-mechanical coupling coefficient, poisson's ratio and density. The results of simulation, elastic compliance constant s$_{11}$ and piezoelectric constant d$_{31}$ had the most of influence on the elliptic-motion. This results consist with using transverse effect of material. The used motor were piezoceramics of 4 layers, and the dimensions were 65$\times$5$\times$3.5mm(LxWxt).).

  • PDF

Dynamic Analysis of a Three-dimensional Catenary System Using the Finite Element Method (유한요소해석을 이용한 3 차원 전차선로의 동특성 분석)

  • Lee, Kyo-Ho;Cho, Yong-Hyun;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1306-1313
    • /
    • 2009
  • Dynamic and static behaviors of a three-dimensional catenary system for a high-speed railway are analyzed by using the finite element method. Considering tensions in the contact wire and the messenger wire, we drive the equations of motion for the catenary system. These equations are for the longitudinal, transverse, vertical and torsional motions. After establishing the weak form, the weak forms are spatially discretized with newly defined two-node beam elements. With the discretized equations, a finite element computer program is developed for the static and dynamic analyses. The static deflections of the catenary system, which are important for good contact between the pantograph and the contact line, are computed when the gravity is applied. On the other hand, we analyze the natural frequencies and the corresponding natural modes of the catenary system. The dynamic responses of the system are also investigated when applying a load to the contact line. For verification of the developed finite element program, vibrations of the catenary system are measured and they are compared to computed time responses.

Design and Manufacture of a Hand-made Vehicle Based on a Formula (포뮬러 형태의 자작자동차 설계 및 제작)

  • Lee, Soo Jin;Jeong, Wonsun;Kim, Geunbi;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.568-575
    • /
    • 2015
  • A hand-made vehicle with a formula (VF-1) was designed and manufactured with the aim of realizing a lightweight and high-performance vehicle. The driver's body weight and stiffness of the frame were considered. The vehicle was equipped with a one-cylinder Exiv 250 engine with intake manifold potting for realizing weight reduction, high performance, and low cost. The suspension system for the formula was designed through the analyses and tests of vehicle motion and equipment. In a steering system, anti-Ackerman geometry was introduced to increase the transverse force during cornering. A full electric paddle shift system was adopted to decrease the braking distance. For protection against the distortion and warping of the frame, tungsten inert gas (TIG) welding technology was used.

Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM

  • Arani, Ali Ghorbanpour;Kolahchi, Reza;Esmailpour, Masoud
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.787-800
    • /
    • 2016
  • The aim of the paper is to analyze nonlinear transverse vibration of an embedded piezoelectric plate reinforced with single walled carbon nanotubes (SWCNTs). The system in rested in a Pasternak foundation. The micro-electro-mechanical model is employed to calculate mechanical and electrical properties of nanocomposite. Using nonlinear strain-displacement relations and considering charge equation for coupling between electrical and mechanical fields, the motion equations are derived based on energy method and Hamilton's principle. These equations can't be solved analytically due to their nonlinear terms. Hence, differential quadrature method (DQM) is employed to solve the governing differential equations for the case when all four ends are clamped supported and free electrical boundary condition. The influences of the elastic medium, volume fraction and orientation angle of the SWCNTs reinforcement and aspect ratio are shown on frequency of structure. The results indicate that with increasing volume fraction of SWCNTs, the frequency increases. This study might be useful for the design and smart control of nano/micro devices such as MEMS and NEMS.

Free vibrations of laminated composite plates using a novel four variable refined plate theory

  • Sehoul, Mohammed;Benguediab, Mohamed;Bakora, Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.603-613
    • /
    • 2017
  • In this research, the free vibration response of laminated composite plates is investigated using a novel and simple higher order shear deformation plate theory. The model considers a non-linear distribution of the transverse shear strains, and verifies the zero traction boundary conditions on the surfaces of the plate without introducing shear correction coefficient. The developed kinematic uses undetermined integral terms with only four unknowns. Equations of motion are obtained from the Hamilton's principle and the Navier method is used to determine the closed-form solutions of antisymmetric cross-ply and angle-ply laminates. Numerical examples studied using the present formulation is compared with three-dimensional elasticity solutions and those calculated using the first-order and the other higher-order theories. It can be concluded that the present model is not only accurate but also efficient and simple in studying the free vibration response of laminated composite plates.

Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium

  • Amir, Saeed;Arshid, Ehsan;Maraghi, Zahra Khoddami
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.581-592
    • /
    • 2020
  • Magneto-rheological fluids and magneto-strictive materials are of the well-known smart materials which are used to control and reduce the vibrations of the structures. Vibration analysis of a smart annular three-layered plate is provided in this work. MR fluids are used as the core's material type and the face sheets are made from MS materials and is assumed they are fully bonded to each other. The structure is rested on visco-Pasternak foundation and also is subjected to a transverse magnetic field. The governing motion equations are derived based on CPT and employing Hamilton's principle and are solved via GDQ as a numerical method for various boundary conditions. Effect of different parameters on the results are considered and discussed in detail. One of the salient features of this work is the consideration of MR fluids as the core, MS materials as the faces, and all of them under magnetic field. The outcomes of this study may be led to design and create smart structures such as sensors, actuators and also dampers.

Use of Composite Tailoring Techniques for a Low Vibration Rotor (복합재료 테일러링 기법을 이용한 저진동 로터 개발)

  • 이주영;박일주;정성남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.575-580
    • /
    • 2004
  • In this work, the effect of composite couplings and mass distributions on hub loads of a hingeless rotor in forward flight is investigated. 1'he hingeless composite rotor is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear and torsion warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade responses and hub loads are calculated using a finite element formulation both in space and time. The aerodynamic forces acting on the blade are calculated using the quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap($\delta$$_{3}$) coupling. It is observed that the elastic couplings and mass distributions of the blade have a substantial effect on the behavior of $N_{b/}$rev hub loads. About 40% hub loads is reduced by tailoring or redistributing the structural properties of the blade.f the blade.

  • PDF