• 제목/요약/키워드: Transverse Load Test

검색결과 171건 처리시간 0.026초

Evaluation of electromechanical properties in REBCO CC tapes under transverse compression using anvil test method

  • Diaz, Mark Angelo;Shin, Hyung-Seop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권3호
    • /
    • pp.57-61
    • /
    • 2022
  • One of the major applications of REBCO coated conductor (CC) tapes is in superconducting magnets or coils that are designed for high magnet fields. For such applications, the CC tapes were exposed to a high level of stresses which includes uniaxial tensile or transverse compressive stresses resulting from a large magnetic field. Thus, CC tapes should endure such mechanical load or deformation that can influence their electromechanical performance during manufacturing, cool-down, and operation. It has been reported that the main cause of critical current (Ic) degradation in CC tapes utilized in coil windings for superconducting magnets was the delamination due to transversely applied stresses. In most high-magnetic-field applications, the operating limits of the CC tapes will likely be imposed by the electromechanical properties together with its Ic dependence on temperature and magnetic field. In this study, we examined the influence of the transverse compressive stress on the Ic degradation behaviors in various commercially available CC tapes which is important for magnet design Four differently processed REBCO CC tapes were adopted to examine their Ic degradation behaviors under transverse compression using an anvil test method and a newly developed instantaneous Ic measurement system. As a result, all REBCO CC tapes adopted showed robustness against transverse compressive stresses for REBCO coils, notably at transverse compressive stresses until 250 MPa. When the applied stress further increased, different Ic degradation behaviors were observed depending on the sample. Among them, the one that was fabricated by the IBAD/MOCVD process showed the highest compressive stress tolerance.

나선철근 원형교각의 연성 및 내진성능 (Ductility and Seismic Performance of Spirally Reinforced Bridge Columns)

  • 이재훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.356-363
    • /
    • 2000
  • The objectives of this study are to investigate seismic performance of spirally reinforced bridge columns and to provide test result for developing improved seismic design criteria. Quasi-static test was conducted for 12 columns of which variables were transverse reinforcement ratio and spacing, longitudinal reinforcement ratio, and axial load level. Sufficient seismic performance was observed from the test for the columns with greater confinement steel amount than the requirement of the Korean Bridge Design Specification. The columns with 0.84% of the confinement steel requirement provided adequate performance under less than 0.2 of axial load level, but showed lower ductility under 0.3 of axial load level. The current provision for the region of confinement steel distribution may be non-conservative under high axial load level, therefore a modified provision is proposed.

  • PDF

내력설계법에 의한 고강도 철근콘크리트 띠철근 기둥의 횡보강근량 산정 (Design of Transverse Steel Amounts of High Strength Reinforced Tied Columns by Axial Capacity Design Method)

  • 한범석;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.151-156
    • /
    • 2003
  • On the basis of the philosophy that "the compressive axial load capacity after spalling of shell concrete should be maintained as that before spalling" by applying the confinement model of high strength concrete proposed in the previous proceeding paper and equivalent lateral confining pressure considering configurations of transverse reinforcement, the amounts of transverse reinforcement from the compressive capacity design method about high strength reinforced concrete tied columns can be calculated through the formula proposed in this paper. The proposed design equation of transverse steel amounts for high strength reinforced concrete tied columns was quite agreeable with the test results of HSC tied columns conducted by other researchers as well as author.as author.

  • PDF

Load-slip curves of shear connection in composite structures: prediction based on ANNs

  • Guo, Kai;Yang, Guotao
    • Steel and Composite Structures
    • /
    • 제36권5호
    • /
    • pp.493-506
    • /
    • 2020
  • The load-slip relationship of the shear connection is an important parameter in design and analysis of composite structures. In this paper, a load-slip curve prediction method of the shear connection based on the artificial neural networks (ANNs) is proposed. The factors which are significantly related to the structural and deformation performance of the connection are selected, and the shear stiffness of shear connections and the transverse coordinate slip value of the load-slip curve are taken as the input parameters of the network. Load values corresponding to the slip values are used as the output parameter. A twolayer hidden layer network with 15 nodes and 10 nodes is designed. The test data of two different forms of shear connections, the stud shear connection and the perforated shear connection with flange heads, are collected from the previous literatures, and the data of six specimens are selected as the two prediction data sets, while the data of other specimens are used to train the neural networks. Two trained networks are used to predict the load-slip curves of their corresponding prediction data sets, and the ratio method is used to study the proximity between the prediction loads and the test loads. Results show that the load-slip curves predicted by the networks agree well with the test curves.

Seismic performance of lightweight aggregate concrete columns subjected to different axial loads

  • Yeon-Back Jung;Ju-Hyun Mun;Keun-Hyeok Yang;Chae-Rim Im
    • Structural Engineering and Mechanics
    • /
    • 제88권2호
    • /
    • pp.169-178
    • /
    • 2023
  • Lightweight aggregate concrete (LWAC) has various advantages, but it has limitations in ensuring sufficient ductility as structural members such as reinforced concrete (RC) columns due to its low confinement effect of core concrete. In particular, the confinement effect significantly decreases as the axial load increases, but studies on evaluating the ductility of RC columns at high axial loads are very limited. Therefore, this study examined the effects of concrete unit weight on the seismic performance of RC columns subjected to constant axial loads applied with different values for each specimen. The column specimens were classified into all-lightweight aggregate concrete (ALWAC), sand-lightweight aggregate concrete (SLWAC), and normal-weight concrete (NWC). The amount of transverse reinforcement was specified for all the columns to satisfy twice the minimum amount specified in the ACI 318-19 provision. Test results showed that the normalized moment capacity of the columns decreased slightly with the concrete unit weight, whereas the moment capacity of LWAC columns could be conservatively estimated based on the procedure stipulated in ACI 318-19 using an equivalent rectangular stress block. Additionally, by applying the section lamina method, the axial load level corresponding to the balanced failure decreased with the concrete unit weight. The ductility of the columns also decreased with the concrete unit weight, indicating a higher level of decline under a higher axial load level. Thus, the LWAC columns required more transverse reinforcement than their counterpart NWC columns to achieve the same ductility level. Ultimately, in order to achieve high ductility in LWAC columns subjected to an axial load of 0.5, it is recommended to design the transverse reinforcement with twice the minimum amount specified in the ACI 318-19 provision.

중력식 사방댐 후면에 설치된 원통형 대책구조물의 배치조건이 토석류의 충격하중에 미치는 영향 (Effect of the Cylindrical Baffle Configuration Behind Rigid Barrier on Impact Load of Debris Flow)

  • 김범준;윤찬영
    • 한국지반공학회논문집
    • /
    • 제38권11호
    • /
    • pp.7-17
    • /
    • 2022
  • 본 연구에서는 중력식 사방댐 후면에 설치된 원통형 강성기둥 구조물의 배치변화가 토석류의 흐름거동 및 충격하중 변화에 미치는 영향을 확인하기 위해, 대책구조물들을 소형수로에 모사한 다음 원통형 구조물의 종방향 배열 수와유로 차단비율을 변화시켜가면서 실내모형실험을 수행하였다. 실험과정에서 대책구조물의 주변 흐름거동을 촬영하고, 중력식 사방댐의 작용하는 토석류의 충격하중을 측정하기 위해, 수로 측면과 상부에는 고속카메라를 설치하였고, 사방댐의 전면에는 로드셀을 설치하였다. 게다가, 글라스 비즈를 이용하여 토석류에 의해 동반되는 큰 직경의 거석들을 수로에 모사하였다. 실험결과, 중력식 사방댐 후면에 원통형 강성기둥 구조물의 설치는 토석류의 충격하중을 크게 감소시키는 것으로 나타났다. 또한, 대책구조물의 유로 차단비율을 증가시키면 거석을 동반한 토석류의 흐름억제를 증가시켜 충격하중을 더욱 감소시키는 것으로 나타났다.

Steel fibre and transverse reinforcement effects on the behaviour of high strength concrete beams

  • Cucchiara, Calogero;Fossetti, Marinella;Papia, Maurizio
    • Structural Engineering and Mechanics
    • /
    • 제42권4호
    • /
    • pp.551-570
    • /
    • 2012
  • An experimental program was carried out to investigate the influence of fibre reinforcement on the mechanical behaviour of high strength reinforced concrete beams. Eighteen beams, loaded in four-point bending tests, were examined by applying monotonically increasing controlled displacements and recording the response in terms of load-deflection curves up to failure. The major test variables were the volume fraction of steel fibres and the transverse steel amount for two different values of shear span. The contribution of the stirrups to the shear strength was derived from the deformations of their vertical legs, measured by means of strain gauges. The structural response of the tested beams was analyzed to evaluate strength, stiffness, energy absorption capacity and failure mode. The experimental results and observed behaviour are in good agreement with those obtained by other authors, confirming that an adequate amount of steel fibres in the concrete can be an alternative solution for minimizing the density of transverse reinforcement. However, the paper shows that the use of different theoretical or semi-empirical models, available in literature, leads to different predictions of the ultimate load in the case of dominant shear failure mode.

Seismic Behavior of High-Strength Concrete Square Short Columns Confined in Thin Steel Shell

  • Han, Byung-Chan;Yun, Hyun-Do;Chung, Soo-Young
    • KCI Concrete Journal
    • /
    • 제12권1호
    • /
    • pp.23-34
    • /
    • 2000
  • Experiments were carried out to investigate the seismic behaviors, such as lateral strength, ductility and energy-dissipation capacity. of high-strength concrete (HSC) square short column confined in thin steel shell. The primary objective of the study was to investigate the suitability of using HSC square columns confined in thin steel shell in region of moderate-to-high seismic risk. A total of six columns, consisting of two ordinarily reinforced concrete square short columns and four reinforced concrete square short columns confined in thin steel shell was tested. Column specimens, short columns in a moment resisting frame with girder. were tested under a constant axial and reversed cyclic lateral loads. To design the specimens. transverse reinforcing methods, level of axial load applied, and the steel tube width-thickness ratio (D/t) were chosen as main parameters. Test results were also discussed and compared in the light of improvements in general behaviors, ductility, and energy-absorption capacities. Compared to conventionally reinforced concrete columns, the HSC columns confined in thin steel shell had similar load-displacement hysteretic behavior but exhibited greater energy-dissipation characteristics . It is concluded that, in strong earthquake areas, the transverse reinforcing method by using a thin steel shell (D/t=125) is quite effective to make HSC short columns with very strong and ductile.

  • PDF

장력법을 적용한 박판블록의 변형제어에 관한 연구 (A Study on the Deformation Control of Thin Plate Block by Applying the Tensioning Method)

  • 김철호;양종수;김호경
    • Journal of Welding and Joining
    • /
    • 제25권6호
    • /
    • pp.59-63
    • /
    • 2007
  • The weld-induced deformation is more serious in thin plates than in thick plates because heat affect zone of thin plates is wider than that of thick plates and in addition internal and external constraints have much more influence upon weld-induced deformation of thin plates. This paper deals with the application of the mechanical tensioning method to butt weld of thin plates to reduce the transverse and longitudinal deformation. In order to investigate the quantitative effect of tensioning method upon the reduction of angular deformation and shrinkage in longitudinal and transverse direction of weld line, butt welding test has been carried out for several thin plate specimens with varying plate thickness and magnitude of tensile load. From the present experimental study, it has been found that the tensioning method is very effective in reducing the weld-induced residual stress as well as the weld-induced deformation.

모듈러 슬래브교량의 횡방향 연결부 구조적 거동 및 사용성 평가 (Evaluation of Structural Behavior and Serviceability on Transverse Connection for Modular Slab Bridge System)

  • 최진웅;이상승;박선규;홍성남
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권6호
    • /
    • pp.139-146
    • /
    • 2014
  • 최근 구조물의 노후화에 따른 급속 교체, 교통 영향 및 환경 영향 최소화의 요구에 따라 프리캐스트 기술을 활용한 모듈러 교량 연구가 활발하게 진행중에 있다. 본 연구는 모듈러 교량과 관련된 연구의 일환으로 모듈러 슬래브 교량의 횡방향 연결부를 대상으로 반복하중 재하 실험을 통하여 횡방향 연결부의 반복 하중에 따른 구조적 거동 특성을 파악하고 사용성 평가하였다. 반복하중의 크기를 결정하기 위하여 RC 보를 1개 제작하였으며 반복하중 재하 실험을 위하여 일체형 RC 보 1개와 분절형 실험체 3개를 제작하였다. 실험결과, 분절형 실험체는 하중 반복 횟수가 증가함에 따라 처짐 및 균열폭이 거의 일정하거나 수렴하는 경향을 나타냈으며, 일체형 RC 보와 비교하여 최대 처짐, 잔류처짐, 균열폭 모두 작게 나타났다. 또한 사용하중을 반복 재하한 실험체의 경우, 처짐 및 균열에 대한 사용성 기준을 모두 만족하였다.