• Title/Summary/Keyword: Transverse Curvature Effect

Search Result 39, Processing Time 0.023 seconds

Generation of Subdivision Surface and First-order Shear Deformable Shell Element Based on Loop Subdivision Surface (서브디비전의 다중해상도 기능을 이용한 곡면의 모델링과 유한요소 해석)

  • 김형길;서홍석;조맹효
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.151-160
    • /
    • 2004
  • In the present study, Loop scheme is applied to generate smooth surfaces. To be consistent with the limit points of target surface, the initial sampling points are properly rearranged. The pointwise errors of curvature and position in the sequence of subdivision process are evaluated in the Loop subdivision scheme. A first-order shear deformable Loop subdivision triangular element which can handle transverse shear deformation of moderately thick shell are developed. The developed element is more general than the previous one based on classical shell theory, since the new one includes the effect of transverse shear deformation and has standard six degrees of freedom per node. The quartic box spline function is used as interpolation basis function. Numerical examples for the benchmark static shell problems are analyzed to assess the performance of the developed subdivision shell element and locking trouble.

A Numerical Analysis on the Diaphragm Structures for Improving Fatigue Performance in Orthotropic Steel Decks (강바닥판의 피로성능 향상을 위한 다이아프램 구조상세)

  • Shin, Jae Choul;An, Zu Og;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.6
    • /
    • pp.559-573
    • /
    • 2007
  • Orthotropic steel decks are manufactured by welding thin plates therefore it is inevitable that there are abundant works of welding process. On connection of transverse rib web, crossing point of longitudinal rib, transverse rib and deck plate and cut-out parts of transverse rib are the significant position of stress concentration because of out of plane and oil-canning deformation caused by longitudinal rib distortion with shear force and distortion. At the current research, the crossing point where the orthotropic steel decks's effect of improving fatigue performance are high, not placing scallop and diaphragm which have same plane with transverse rib placed inside of longitudinal rib at the same time, the reduce effects of stress concentration at the cut-out section and the crossing are high. Especially the installation of the diaphragm causing great effects based on research results to stress concentration appearance reduce effects at the cut-out section, putting radius of curvature of the diaphragm's top and bottom as a target, as a result of carrying out the parametric analysis an optimal diaphragm form that has great effects in fatigue performance came to a conclusion. Also based on optimal diaphragm form, an advantage of the diaphragm optimal setting position for improvement of the fatigue performance came to a conclusion.

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

Molecular Dynamics Simulation of a Small Drop of Liquid Argon

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3805-3809
    • /
    • 2012
  • Results for molecular dynamics simulation method of small liquid drops of argon (N = 1200-14400 molecules) at 94.4 K through a Lennard-Jones intermolecular potential are presented in this paper as a preliminary study of drop systems. We have calculated the density profiles ${\rho}(r)$, and from which the liquid and gas densities ${\rho}_l$ and ${\rho}_g$, the position of the Gibbs' dividing surface $R_o$, the thickness of the interface d, and the radius of equimolar surface $R_e$ can be obtained. Next we have calculated the normal and transverse pressure tensor ${\rho}_N(r)$ and ${\rho}_T(r)$ using Irving-Kirkwood method, and from which the liquid and gas pressures ${\rho}_l$ and ${\rho}_g$, the surface tension ${\gamma}_s$, the surface of tension $R_s$, and Tolman's length ${\delta}$ can be obtained. The variation of these properties with N is applied for the validity of Laplace's equation for the pressure change and Tolman's equation for the effect of curvature on surface tension through two routes, thermodynamic and mechanical.

Effect of Simultaneous Implementation of Thermal and Massage Therapy on Patients (척추 측만증에 대한 온열-마사지의 동시 적용 효과 : 증례보고)

  • Kim, Yu-Mi;Lee, Kwang-Jae;Yoon, Yong-Soon
    • Journal of Industrial Convergence
    • /
    • v.20 no.1
    • /
    • pp.107-114
    • /
    • 2022
  • Scoliosis is defined as a condition in which the spine curves more than 10 degrees in frontal plane. However, it is complicated because it involves transverse and sagittal components as well as the frontal plane. Curvature can progress to growing children and cause serious problems. Treatments of Scoliosis, including observation, are casting, braces, physical therapy, exercise, and surgery. The goal of scoliosis management is to achieve minimal asymmetry by maintaining low angle values. However, it is difficult for adolescents to receive continuous treatment due to study and lack of time. We report cases of scoliosis that have experienced improvement of Cobb's angle through spinal thermal massage management at home.

Effect of the Radius of Curvature on the Contact Pressure Applied to the Endplate of the Sliding Core in an Artificial Intervertebral Disc (인공추간판 슬라이딩 코어의 곡률반경 변화가 종판의 접촉압력에 미치는 영향)

  • Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The treatments for spinal canal stenosis are radicular cyst removal, spine fusion, and implantation of an artificial intervertebral disc. Artificial intervertebral discs have been most widely used since the mid-2000s. The study of artificial intervertebral discs has been focused on the analysis of the axial rotation, lateral bending, the degrees of freedom of the disc, and flexion-extension of the vertebral body. The issue of fatigue failure years after the surgery has arisen as a new problem. Hence, study of artificial intervertebral discs must be focused on the fatigue failure properties and increased durability of the sliding core. A finite element model based on an in the artificial intervertebral disc (SB Charit$\acute{e}$ III) was produced, and the influence of the radius of curvature and the change in the coefficient of friction of the sliding core on the von-Mises stress and contact pressure was evaluated. Based on the results, new artificial intervertebral disc models (Models-I, -II, and -III) were proposed, and the fatigue failure behavior of the sliding core after a certain period of time was compared with the results for SB Charit$\acute{e}$ III.

Influence of Turning Region and Channel Rotation on Pressure Drop in a Square Channel with Transverse Ribs (90° 요철이 설치된 정사각 덕트 내 압력강하에 곡관부 및 회전이 미치는 영향)

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.126-135
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. The square duct has a hydraulic diameter $(D_h)$ of 26.7 mm, and $1.5mm{\times}1.5mm$ square $90^{\circ}-rib$ turbulators are attached on the leading and trailing walls. The pitch-to-rib height ratio (p/e) is 10. The distance between the tip of the divider and the outer wall of the duct is $1.0D_h$ and the width of divider wall is 6.0mm or $0.225D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 to exclude the Reynolds effect, and the rotation number (Ro) is varied from 0.0 to 0.20. The pressure drop distribution, the friction factor and thermal performance are presented for the leading, trailing and the outer surfaces. It is found that the curvature of the $180^{\circ}$-turn produces Dean vortices that cause high pressure drop in the turn. The channel rotation results in pressure drop discrepancy between leading and trailing surfaces so that non-dimensional pressure drops are higher on the trailing surface in the first-pass and on the leading and side surfaces in the second-pass. In the turning region, Dean vortices shown in the stationary case transform into one large asymmetric vortex cell, and subsequent pressure drop characteristics also change. As the rotation number increases, the pressure drop discrepancy enlarges.

Parametric Study on Trapezoidal Section in Curved Box Girder Bridge Including Distortional Warping (제형 단면을 갖는 곡선 박스거더교량의 뒴 뒤틀림 특성에 대한 매개변수 연구)

  • Nguyen Van, Ban;Kim, Sung-Nam;Kim, Seung-Jun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.297-302
    • /
    • 2007
  • Although just developed in recent years, curved box girder has widely used in modern highway system due to their load resistance capacity as well as aesthetic considerations. According to recent literature reviews on curved box girder designs, distortional load was not considered as much as it deserves to be. In practice, the effect of distortional force is very small in straight bridge systems but yet unknown how it is in curved bridge systems. For the reason, this paper will show an extensive parametric study on distortional behavior. Based on Dabrowski formulas, using finite element method, various bridges were investigated. In this study, following parameters will be included: span length, curvature radius, section height, section width, and internal section angle (web slope). From the obtained results, some initial geometric parameters are proposed for curved box girder bridges.

  • PDF

Construction stages analyses using time dependent material properties of concrete arch dams

  • Sevim, Baris;Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.5
    • /
    • pp.599-612
    • /
    • 2014
  • This paper presents the effects of the construction stages using time dependent material properties on the structural behaviour of concrete arch dams. For this purpose, a double curvature Type-5 arch dam suggested in "Arch Dams" symposium in England in 1968 is selected as a numerical example. Finite element models of Type-5 arch dam are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the construction stage analysis using P-Delta plus large displacement criterion. In addition, the time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. In the construction stage analyses, a total of 64 construction stages are included. Each stage has generally $6000m^3$ concrete volume. Total duration is taken into account as 1280 days. Maximum total step and maximum iteration for each step are selected as 200 and 50, respectively. The structural behaviour of the arch dam at different construction stages has been examined. Two different finite element analyses cases are performed. In the first case, construction stages using time dependent material properties are considered. In the second case, only linear static analysis (not considered construction stages) is taken into account. Variation of the displacements and stresses are obtained from the both analyses. It is highlighted that construction stage analysis using time dependent material strength variations and geometric variations has an important effect on the structural behaviour of arch dams. The maximum longitudinal, transverse and vertical displacements obtained from construction stages and static analyses are 1.35 mm and 0 mm; -8.44 and 6.68 mm; -4.00 and -9.90 mm, respectively. In addition, vertical displacements increase from the base to crest of the dam for both analyses. The maximum S11, S22 and S33 stresses are obtained as 1.60MPa and 2.84MPa; 1.39MPa and 2.43MPa; 0.60MPa and 0.50MPa, respectively. The differences between maximum longitudinal, transverse, and vertical stresses obtained from construction stage and static analyses are 78%, 75%, and %17, respectively. On the other hand, there is averagely 12% difference between minimum stresses for all three directions.