References
- Cirak, F., Ortiz, M., Schroder, P., 'Subdivision surface : a new paradigm for thin shell finite-element analysis,' International Journal Numerical Methods in Engineering, Vol.47, 2000, pp.2039-2072 https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
-
Cirak, F., Ortiz, M., Schr
$\ddot{o}$ der, P.,'Fully C1-conforming subdivision element for finite deformation thin-shell analysis,' International Journal for Numerical Methods in Engineering, Vol.51, 2001, pp.813-833 https://doi.org/10.1002/nme.182.abs -
Cirak, F., Scott, M. J, Antonsson,E. K., Ortiz, M., Schr
$\ddot{o}$ der, P., 'Integrated modeling finite- element analysis and engineering design for thin shell structures using subdivision,' Computer Aided Design, Vol.34, 2002, pp.137-148 https://doi.org/10.1016/S0010-4485(01)00061-6 - Ahmad,S., Iron, B. and Zienkiewicz, O., 'Analysis of thick and thin shell structures by curved elements', International Journal for Numerical Methods in Engineering, Vol.2, 1970, pp.419-451 https://doi.org/10.1002/nme.1620020310
- Simo, J.C. and Fox, D.D., 'On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parameterization, 'Computer Method in Applied Mechanics and Engineering, Vol.72, 1989, pp.267-304 https://doi.org/10.1016/0045-7825(89)90002-9
- Simo, J.C., Fox, D.D., and Rifai, S., 'On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects' Computer Method in Applied Mechanics and Engineering, Vol.73, 1989, pp.53-92 https://doi.org/10.1016/0045-7825(89)90098-4
-
Zorin, D., Schr
$\ddot{o}$ der, P., 'Subdivision for modeling and animation,' SIGGRAPH 2000 Course Note - Loop, C.,'Smooth subdivision for surfaces based on triangles' Master's thesis, University of Utah, 1987
- Catmull, E., Clark, J., 'Recursively generated B-spline surfaces on arbitrary topological meshes' Computer Aided Design, Vol.10, No.6, 1978, pp.350-355 https://doi.org/10.1016/0010-4485(78)90110-0
- Dyn, N., Levin, D., Gregory, J., 'A butter fly subdivision scheme for surface interpolation with tension control,' ACM Transaction on Graphics, Vol.9, No.3, 1990, pp.160-169 https://doi.org/10.1145/78956.78958
- Doo, D., Sabin, M. A., 'Behavior of recursive subdivision surfaces near extraordinary points' Computer Aided Design, Vol.10, No.6, 1978, pp.356-360 https://doi.org/10.1016/0010-4485(78)90111-2
- Cho, M., Roh, H. Y. 'Development of geomet rically exact new shell elements based on general curvilinear coordinates' International Journal for Numerical Methods in Engineering, Vol.56, No.1, 2003, pp.81-115 https://doi.org/10.1002/nme.546
- Stander, N., Matzenmiller, A., Ramm, E., 'An assessment on assumed strain methods in rotation shell analysis.' Engineering Computations, Vol.3, 1989, pp.58-66
- Bathe, K. J., Dvorkin, E. N. 'Formulation of general shell elements - The use of mixed interpolation of tensorial components.' International Journal for Numerical Methods in Engineering, Vol.22, 1986, pp.697-722 https://doi.org/10.1002/nme.1620220312