Generation of Subdivision Surface and First-order Shear Deformable Shell Element Based on Loop Subdivision Surface

서브디비전의 다중해상도 기능을 이용한 곡면의 모델링과 유한요소 해석

  • 김형길 (포스코 열연기술개발팀) ;
  • 서홍석 (현대자동차 파워트레인연구) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • Published : 2004.06.01

Abstract

In the present study, Loop scheme is applied to generate smooth surfaces. To be consistent with the limit points of target surface, the initial sampling points are properly rearranged. The pointwise errors of curvature and position in the sequence of subdivision process are evaluated in the Loop subdivision scheme. A first-order shear deformable Loop subdivision triangular element which can handle transverse shear deformation of moderately thick shell are developed. The developed element is more general than the previous one based on classical shell theory, since the new one includes the effect of transverse shear deformation and has standard six degrees of freedom per node. The quartic box spline function is used as interpolation basis function. Numerical examples for the benchmark static shell problems are analyzed to assess the performance of the developed subdivision shell element and locking trouble.

본 연구에서는 서브디비전 방법 중 루프 서브디비전 방법을 이용하여 초기의 데이터 값으로부터 몇 번의 서브디비전 과정을 거쳤을 때, 초기 데이터 점이 극한곡면 위에 있도록 곡면 재생성 방법을 구현하였으며, n번 서브디비전을 수행한 곡면의 정확도를 곡률과 좌표값의 상대오차로 평가하였다. 또한 절의 전반변형을 표현할 수 있는 일차 전단변형 루프 서브디비전 유한요소를 개발하였다. 새롭게 개발된 요소는 한 개의 절점에서 6개의 자유도를 가지고 전반 변형효과를 포함하는 일반화된 요소인데, 기저함수로 4차 박스-스플라인함수가 사용되었다. 평가 수치예제를 통해 서브디비전 꿸 요소의 성능을 평가/검증하였다. 본 연구에서 개발된 서브디비전 요소는 다중해상도 해석과 기하학적 모델링에 널리 사용될 수 있다.

Keywords

References

  1. Cirak, F., Ortiz, M., Schroder, P., 'Subdivision surface : a new paradigm for thin shell finite-element analysis,' International Journal Numerical Methods in Engineering, Vol.47, 2000, pp.2039-2072 https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
  2. Cirak, F., Ortiz, M., Schr$\ddot{o}$der, P.,'Fully C1-conforming subdivision element for finite deformation thin-shell analysis,' International Journal for Numerical Methods in Engineering, Vol.51, 2001, pp.813-833 https://doi.org/10.1002/nme.182.abs
  3. Cirak, F., Scott, M. J, Antonsson,E. K., Ortiz, M., Schr$\ddot{o}$der, P., 'Integrated modeling finite- element analysis and engineering design for thin shell structures using subdivision,' Computer Aided Design, Vol.34, 2002, pp.137-148 https://doi.org/10.1016/S0010-4485(01)00061-6
  4. Ahmad,S., Iron, B. and Zienkiewicz, O., 'Analysis of thick and thin shell structures by curved elements', International Journal for Numerical Methods in Engineering, Vol.2, 1970, pp.419-451 https://doi.org/10.1002/nme.1620020310
  5. Simo, J.C. and Fox, D.D., 'On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parameterization, 'Computer Method in Applied Mechanics and Engineering, Vol.72, 1989, pp.267-304 https://doi.org/10.1016/0045-7825(89)90002-9
  6. Simo, J.C., Fox, D.D., and Rifai, S., 'On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects' Computer Method in Applied Mechanics and Engineering, Vol.73, 1989, pp.53-92 https://doi.org/10.1016/0045-7825(89)90098-4
  7. Zorin, D., Schr$\ddot{o}$der, P., 'Subdivision for modeling and animation,' SIGGRAPH 2000 Course Note
  8. Loop, C.,'Smooth subdivision for surfaces based on triangles' Master's thesis, University of Utah, 1987
  9. Catmull, E., Clark, J., 'Recursively generated B-spline surfaces on arbitrary topological meshes' Computer Aided Design, Vol.10, No.6, 1978, pp.350-355 https://doi.org/10.1016/0010-4485(78)90110-0
  10. Dyn, N., Levin, D., Gregory, J., 'A butter fly subdivision scheme for surface interpolation with tension control,' ACM Transaction on Graphics, Vol.9, No.3, 1990, pp.160-169 https://doi.org/10.1145/78956.78958
  11. Doo, D., Sabin, M. A., 'Behavior of recursive subdivision surfaces near extraordinary points' Computer Aided Design, Vol.10, No.6, 1978, pp.356-360 https://doi.org/10.1016/0010-4485(78)90111-2
  12. Cho, M., Roh, H. Y. 'Development of geomet rically exact new shell elements based on general curvilinear coordinates' International Journal for Numerical Methods in Engineering, Vol.56, No.1, 2003, pp.81-115 https://doi.org/10.1002/nme.546
  13. Stander, N., Matzenmiller, A., Ramm, E., 'An assessment on assumed strain methods in rotation shell analysis.' Engineering Computations, Vol.3, 1989, pp.58-66
  14. Bathe, K. J., Dvorkin, E. N. 'Formulation of general shell elements - The use of mixed interpolation of tensorial components.' International Journal for Numerical Methods in Engineering, Vol.22, 1986, pp.697-722 https://doi.org/10.1002/nme.1620220312