• Title/Summary/Keyword: Transverse Cracks

Search Result 154, Processing Time 0.022 seconds

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

Detection of crack in L-shaped pipes filled with fluid based on transverse natural frequencies

  • Murigendrappa, S.M.;Maiti, S.K.;Srirangarajan, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.635-658
    • /
    • 2005
  • The possibility of detecting a crack in L-shaped pipes filled with fluid based on measurement of transverse natural frequencies is examined. The problem is solved by representing the crack by a massless rotational spring, simulating the out-of-plane transverse vibration only without solving the coupled torsional vibration and using the transfer matrix method for solution of the governing equation. The theoretical solutions are verified by experiments. The cracks considered are external, circumferentially oriented and have straight front. Pipes made of aluminium and mild steel are tested with water as internal fluid. Crack size to pipe thickness ratio ranging from 0.20 to 0.57 and fluid (gauge) pressure in the range of 0 to 10 atmospheres are examined. The rotational spring stiffness is obtained by an inverse vibration analysis and deflection method. The details of the two methods are given. The results by the two methods are presented graphically and show good agreement. Crack locations are also determined by the inverse analysis. The maximum absolute error in the location is 13.80%. Experimentally determined variation of rotational spring stiffness with ratio of crack size to thickness is utilized to predict the crack sizes. The maximum absolute errors in prediction of crack size are 17.24% and 16.90% for aluminium and mild steel pipes respectively.

Analytical Study on Concrete Cover Thickness of Anisotropic FRP Bar (이방성 섬유강화폴리머 보강근의 콘크리트 피복두께에 대한 해석적 연구)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.58-66
    • /
    • 2022
  • In this study, to examine the effect of the transverse thermal expansion behavior of FRP reinforcing bars and concrete on the concrete cover thickness, based on 20℃, when the temperature changes from -70℃ to 80℃, the behavior of concrete was studied theoretically and numerically. Theoretical elastic analysis and nonlinear finite element analysis were performed on FRP reinforced concrete with different diameters and cover thicknesses of FRP reinforcement. As a result, at a negative temperature difference, concrete was compressed, and the theoretical strain result and the finite element result were similar, but at a positive temperature difference, tensile stress and further cracks occurred in the concrete, which was 1.2 to 1.4 times larger than the theoretical result. The ratio of the diameter of the FRP reinforcing bar to the thickness of the concrete cover (c/db) is closely related to the occurrence of cracks. Since the transverse thermal expansion coefficient of FRP reinforcing bars is three times greater than that of concrete, it is necessary to consider this in design.

Progressive Collapse of Exterior Reinforced Concrete Beam-Column Sub-assemblages: Considering the Effects of a Transverse Frame

  • Rashidian, Omid;Abbasnia, Reza;Ahmadi, Rasool;Nav, Foad Mohajeri
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.479-497
    • /
    • 2016
  • Many experimental studies have evaluated the in-plane behavior of reinforced concrete frames in order to understand mechanisms that resist progressive collapse. The effects of transverse beams, frames and slabs often are neglected due to their probable complexities. In the present study, an experimental and numerical assessment is performed to investigate the effects of transverse beams on the collapse behavior of reinforced concrete frames. Tests were undertaken on a 3/10-scale reinforced concrete sub-assemblage, consisting of a double-span beam and two end columns within the frame plane connected to a transverse frame at the middle joint. The specimen was placed under a monotonic vertical load to simulate the progressive collapse of the frame. Alternative load paths, mechanism of formation and development of cracks and major resistance mechanisms were compared with a two-dimensional scaled specimen without a transverse beam. The results demonstrate a general enhancement in resistance mechanisms with a considerable emphasis on the flexural capacity of the transverse beam. Additionally, the role of the transverse beam in restraining the rotation of the middle joint was evident, which in turn leads to more ductile behavior. A macro-model was also developed to further investigate progressive collapse in three dimensions. Along with the validated numerical model, a parametric study was undertaken to investigate the effects of the removed column location and beam section details on the progressive collapse behavior.

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

Analysis and cause of occurrence of lining cracks on NATM tunnel based on the precise inspection for safety and diagnosis - Part I (정밀안전진단 결과를 활용한 NATM터널(무근)의 라이닝 균열 종류별 발생원인 및 분석 - Part I)

  • Choo, Jin-Ho;Park, Sung-Woo;Kim, Hyung-Tak;Jee, Kee-Hwan;Yoon, Tae-Gook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.199-214
    • /
    • 2011
  • A crack is the main cause to affect the integrity of tunnel lining as well as leakage, spalling, exposed rebar, corrosion, carbonation and so on. Since the 1980, NATM has prevailed on excavation method and geotechnical philosophy in tunnel. Although the pattern of cracks has been reported by several engineers' effort, it was only focused on longitudinal cracks of lining. Eleven operational NATM tunnels have been conducted with the precise inspection for safety and diagnosis by KISTEC (Korea Infrastructure Safety and Technology Incorporation). With those results, the crack patterns by the spatial distribution and appearance for each tunnel have been analyzed and the cause of occurrence for seven common types of cracks in NATM tunnels was classified. Additionally, the longitudinal crack on lining above duct slab was figured out by numerical simulation and field inspection. Each crack has been analyzed by CCD (Charge-Coupled Device) scanner image with 3D configuration. Each type of cracks is also explained with output of experimental and condition of construction. Defined cracks on NATM tunnels will be good example for periodical inspection and precise inspection for safety and diagnosis.

Two-Dimensional Analysis of Cross-ply Laminates with Transverse Cracks Based on the Assumed Crack Opening Deformation (균열열림변형을 고려한 모재균열이 있는 직교적층판의 2차원 해석)

  • 이재화;홍창선;한영명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2002-2014
    • /
    • 1991
  • A refined two-dimensional analysis method, taking into account the crack opening deformation, is proposed for the evaluation of stress distributions in transverse cracked cross-ply laminates. The interlaminar stresses which play an important role in laminate failure are evaluated using the concept of interface layer. A series expansion of the displacements is employed and the thermal residual stresses and Poisson's effects in the laminated are taken into consideration in the formulation. The stress distributions are compared with finite element results. The proposed method represents well the characteristics of the stress distributions. The through-the-thickness variation of the stress distribution is remarkable near the transverse crack due to the crack opening deformation. The interlaminar stresses have significant values at the transverse crack tip and the proposed analysis can be applied as a basis for the prediction of the induced delamination onset by using appropriate failure criteria.

Behavior of Non-seismic Detailed Low-Rise R/C Exterior Beam-to-Column Joints Subjected to Cyclic Loading (반복 하중을 받는 비내진 저층 RC 구조물의 외부 기둥-보 접합부의 거동)

  • Sur, Man-Sik;Chang, Chun-Ho;Kim, Young-Moon
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.109-118
    • /
    • 1999
  • Seismic design code has been performed since 1988 in Korea, so it has not been applied to low-rise reinforced concrete buildings which had been built before 1988. Those building have been designed only for gravity loads based on non-seismic code, Therefore, even minor earthquake occurred, those buildings might have serious damages. In this paper, to investigate the behavior of low-rise reinforced concrete moment resisting frame which had been built in according to the building code of Korea that had been published before 1988, two type of 1/2 scaled exterior beam-column subassemblies which have non-seismic detailing based on the building code of Korea were constructed and tested with reversed cycling loading under the displacement control method. The special features of joint with non-seismic detailing is that there is no transverse reinforcement in the joint. In tests, cracks pattern, strength degradation, loss of stiffness, energy dissipation and the slippage of beam and column bars were investigated. Cracks did not occurred in the joint even seismic loading of 0.12g which is considered as peak ground acceleration in Korea was applied. And increasing seismic loading above 0.12g shear crack happened in the joint which have not transverse beam.

Green's Function of Cracks in Piezoelectric Material (압전재료 내의 균열에 대한 그린함수)

  • Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.967-974
    • /
    • 2007
  • A general form solution is considered for a piezoelectric material containing impermeable cracks subjected to a combined mechanical and in-plane electrical loading. The analysis is based upon the Hilbert problem formulation. Using this solution, typically for a central crack in transverse isotropic piezoelectric material, a closed form solution is obtained, where one concentrated mechanical and electrical load is subjected to the crack surface. This problem could be used as a Green's function to generate the solutions of other problems with the same geometry but of different loading conditions.

Diagnosis of Crack Occurrence of Very-Early Strength Latex-Modified Concretes through Field Tests (현장실험을 통한 VES-LMC 균열발생 원인분석)

  • Choi, Pan-Gil;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.139-146
    • /
    • 2006
  • Many concrete bridge decks develop transverse cracking shortly after construction. These cracks accelerate corrosion of reinforcing steel and lead to concrete deterioration, damage to components beneath the deck, unsightly appearance. These cracks shorten the service life and increase maintenance costs of bridge structures. In this study, VES-LMC overlay, which provides the same benefits as a conventional overlay, is designed to cure very quickly. Although the materials for VES overlays are more expensive, the cost is more than offset by the savings on traffic control and work zone safety measures. Otherwise, reaction of hydration occurs very rapidly in beginning step(concrete placing). As a results, thermal cracking can be occur by thermal stress in accordance with hydration-heat The purpose of this study was to estimate diagnosis of crack occurrence of VES-LMC through field tests at early-age.

  • PDF