• Title/Summary/Keyword: Transportation Management

Search Result 2,764, Processing Time 0.034 seconds

A Fuzzy Multi-Objective Linear Programming Model: A Case Study of an LPG Distribution Network

  • Ozyoruk, Bahar;Donmez, Nilay
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.3
    • /
    • pp.319-329
    • /
    • 2014
  • Supply chain management is a subject that has an increasing importance due to the developments in the global markets and technology. In this paper, a fuzzy multi-objective linear programming model is developed for the supply chain of a company dealing with procurement, storage, filling, and distribution of liquefied petroleum gas (LPG) in Turkey. The model intends to determine the quantities of LPG to be procured, stored, filled to cylinders, and transported between the plants and demand centers for six planning periods. In this model, which aims to minimize both total costs (sum of procurement, storage, filling, and transportation costs) and total transportation distances, demand quantities of the main demand centers and decision maker's aspiration levels about objective functions are fuzzy. After comparing the results obtained from the model with those obtained by using different methods, it is concluded that the proposed method can be applied to real world problems practically and it may be used in this type of problems in order to generate an efficient solution.

Determination of Fleet Size for LTL Transportation With Dynamic Demand

  • Ko, Chang Seong;Chung, Ki-Ho;Shin, Jae-Yeong
    • Management Science and Financial Engineering
    • /
    • v.8 no.2
    • /
    • pp.33-45
    • /
    • 2002
  • This study suggests an approach for determining fleet size for LTL (less -than-truckload) transportation with dynamic demand for on-time supply of the parts between the assembly line in an automobile company and its part suppliers in Korea. The vehicles operated by the transportation trucking companies in Korea in general can be classified into three types depending on the ways how their expenses occur; company -owned truck, mandated truck which is owned by outsider who entrusts the company with its operation, and rented truck (outsourcing) . With the forecasted monthly production data a year, a heuristic algorithm is developed to determine the number of company-owned trucks, mandated trucks, and rented trucks in order to minimize the expected annual operating cost, which is based on the solution technologies used in the aggregate production planning and vehicle routing problem. Finally the algorithm is tested for the problem how the trucking company transports parts for the automobile company.

A Note on Production and Shipment Lot Sizing in a Vendor-Buyer Supply Chain with Transportation Cost (생산자-구매자 공급망에서 운송비용을 고려한 생산 및 출하량 결정)

  • Kim, Chang-Hyun;Kim, Tae-Bok
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.4
    • /
    • pp.53-61
    • /
    • 2008
  • Recently, Ertogral et al.[2] suggested two models considering the transportation cost based on single-vendor single-buyer integrated production-inventory problem. Although their problem-solving algorithm guarantees solutions obtained are optimal, a limitation is revealed that its performance can be inefficient due to complete enumeration search in a certain range. In this paper, a more efficient algorithm in finding optimal solutions is suggested for the same problem suggested by Ertogral et at.[2]. Numerical examples are presented for illustrative purpose.

INVESTMENT EVALUATION OF TRANSPORTATION INFRASTRUTURE PROJECTS USING BINOMIAL REAL OPTION MODEL

  • Qiyu Qian;Xueqing Wang;Charles Y.J. Cheah
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.563-572
    • /
    • 2007
  • Transportation infrastructure is critical to economic growth of a country such as China. Careful evaluation of investments in traffic infrastructure projects is therefore pertinent. As traditional evaluation methods do not consider the uncertainty of future cash flows and mobility during project execution, the real option approach is gradually gaining recognition in the context of valuing construction and infrastructure projects. However, many of the cases only evaluate individual options separately although multiple options often exist in a typical large infrastructure project. Using a highway project in China as a case study, this paper first evaluates a deferment option and a growth option embedded in the project. Subsequently, the values are combined using the fuzzy analytical hierarchy process. It is found that the combined value is less than the sum of the two option values. This finding is consistent with the theoretical observations given in past real option literature despite the use of a different approach.

  • PDF

Challenges and Future of Prefabricated Pipe Spools

  • Tadwalkar, Sahil;Lee, Yujin;Fischer, Martin
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.678-685
    • /
    • 2022
  • Prefabrication is a construction technique that is increasingly being applied to different building components due to its many benefits, including higher quality and lower waste. Despite these advantages, there are challenges in execution of these components on projects, due to transportation logistics, skilled labor requirements, and project management techniques. This paper investigates the current landscape of prefabricated pipe spools and potential solutions for minimizing these challenges. The scope of this research includes a proposed workflow, to standardize implementation of these components. Semi-structured interviews were conducted with industry professionals to assess current industry practices and the validity of the proposed workflow. Findings of this paper indicate that greater integration between design, fabrication and transportation is required to minimize inefficiencies when implementing prefabricated pipe spools on projects.

  • PDF

Spatiotemporal Impact Assessments of Highway Construction: Autonomous SWAT Modeling

  • Choi, Kunhee;Bae, Junseo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.294-298
    • /
    • 2015
  • In the United States, the completion of Construction Work Zone (CWZ) impact assessments for all federally-funded highway infrastructure improvement projects is mandated, yet it is regarded as a daunting task for state transportation agencies, due to a lack of standardized analytical methods for developing sounder Transportation Management Plans (TMPs). To circumvent these issues, this study aims to create a spatiotemporal modeling framework, dubbed "SWAT" (Spatiotemporal Work zone Assessment for TMPs). This study drew a total of 43,795 traffic sensor reading data collected from heavily trafficked highways in U.S. metropolitan areas. A multilevel-cluster-driven analysis characterized traffic patterns, while being verified using a measurement system analysis. An artificial neural networks model was created to predict potential 24/7 traffic demand automatically, and its predictive power was statistically validated. It is proposed that the predicted traffic patterns will be then incorporated into a what-if scenario analysis that evaluates the impact of numerous alternative construction plans. This study will yield a breakthrough in automating CWZ impact assessments with the first view of a systematic estimation method.

  • PDF