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ABSTRACT 

Supply chain management is a subject that has an increasing importance due to the developments in the global mar-
kets and technology. In this paper, a fuzzy multi-objective linear programming model is developed for the supply 
chain of a company dealing with procurement, storage, filling, and distribution of liquefied petroleum gas (LPG) in 
Turkey. The model intends to determine the quantities of LPG to be procured, stored, filled to cylinders, and trans-
ported between the plants and demand centers for six planning periods. In this model, which aims to minimize both 
total costs (sum of procurement, storage, filling, and transportation costs) and total transportation distances, demand 
quantities of the main demand centers and decision maker’s aspiration levels about objective functions are fuzzy. Af-
ter comparing the results obtained from the model with those obtained by using different methods, it is concluded that 
the proposed method can be applied to real world problems practically and it may be used in this type of problems in 
order to generate an efficient solution. 
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1.  INTRODUCTION 

A supply chain is composed of many subsystems 
and it contains much fuzziness due to its integrated struc-
ture and human factor. Along a supply chain, there exist 
different sources of fuzziness, such as random events, 
subjective aspiration levels of decision makers about ob-
jectives, lacking data or uncertainty of available data. For 
every plant in a supply chain, both supplies of previous 
plants and demands of posterior plants are ambiguous 
(Petrovic et al., 1999). Procurement of raw materials and 
deliveries between plants are other sources of fuzziness 
in the supply chains. The quantity and quality of raw and 

intermediate materials procured from a supplier may be 
different from those that are required. Most of the sup-
ply chain models developed in the literature either ig-
nore the uncertainties that often exist in the real world 
problems or tend to take them into account by using 
probabilistic approaches (Petrovic et al., 1999).  

Fuzzy set theory, which had a broad range of appli-
cation in many different disciplines, such as operations 
research, management science, control theory, and arti-
ficial intelligence after Zadeh’s suggestion in 1965, is an 
appropriate and useful tool for defining and considering 
uncertainties in modeling (Zadeh, 1965). Fuzzy approa-
ches are used as an effective tool, especially in situa-
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tions in which usage of standard stochastic methods is 
not appropriate due to the lacking data, uncertain data or 
even absence of any data. As a result of this, the number 
of researchers using fuzzy mathematical models in mod-
eling supply chains has increased in the last two decades. 

Besides those mentioned above, different and some-
times conflicting objectives must be considered together 
in modeling a supply chain, which causes most of the 
developed models to be multi-objective. For example, 
while minimizing production costs, storage costs must 
also be taken into account or distribution costs should 
not be minimized without considering delivery times and 
conditions. As subsystems composing a supply chain are 
rigidly interrelated, they should be considered as a whole 
in order to minimize the total costs along a supply chain. 
However, the articles that aggregate the production and 
distribution processes in the supply chain are few while 
most articles are considering them separately (Pundoor, 
2005; Mokashi and Kokossis, 2003; Xie et al., 2006).  

2.  LITERATURE REVIEW 

For years, there had been a variety of work consid-
ering supply chain processes as separate processes in the 
literature. However, it is discerned that the supply chain 
performance, design and analysis have been handled as 
a whole for about last two decades (Beamon, 1998; Kim 
et al., 2006; Lee and Kim, 2006). The new approach, 
which is based on the integration of the decisions about 
the different functions (procurement, production plan-
ning, inventory management, distribution, allocation, 
etc.) under just one optimization model, has drawn the 
attention of the researchers for the last two decades. 
Since this approach deals with many different functions, 
there are various studies in this field and they cannot be 
classified easily. After analyzing the classification tech-
niques suggested by different resear-chers, it can be eas-
ily seen that, the criteria regarded by them in order to 
classify the studies are too different from each other (Ca-

Table 1. Reviewed articles 

Article Structure of  
supply chain Processes included Planning horizon Number of 

objectives Model 

Chanas and Kuchta  
(1998) Two-stage Distribution Single period Single Fuzzy integer linear 

programming 
Hussein (1998) Two-stage Distribution Single period Multi Linear programming 

Liand Lai (2000) Two-stage Distribution Single period Multi Fuzzy linear  
programming 

Verma et al. (1997) Two-stage Distribution Single period Multi Fuzzy linear/nonlinear 
programming 

El-Wahed (2001) Two-stage Distribution Single period Multi Fuzzy linear  
programming 

Liang (2006) Two-stage Distribution Single period Multi Interactive fuzzy linear 
programming 

El-Wahed and Lee (2006) Two-stage Distribution Single period Multi Fuzzy goal  
programming 

Wang et al. (2004) Two-stage Distribution Multi-period Single Linear programming 

Shih (1997) Two-stage Distribution Multi-period Single Mixed integer linear 
programming 

Wang and Liang (2005) Two-stage Production, distribution Multi-period Multi Fuzzy linear  
programming 

Bylka (1999) Two-stage Production, storage, 
distribution Multi-period Single Dynamic programming

Eksioglu et al. (2007) Two-stage Production, storage, 
distribution Multi-period Single Dynamic programming

Ozdamar and Yazgac 
(1999) Two-stage Production, storage, 

distribution Multi-period Single Mixed integer linear 
programming 

Bilgen and Ozkarahan 
(2007) Two-stage Production, storage, 

distribution Multi-period Single Mixed integer linear 
programming 

Gen and Syarif (2005) Two-stage Production, storage, 
distribution Multi-period Single Linear programming 

Kanyalkar and Adil  
(2005) Two-stage Production, storage, 

distribution Multi-period Single Linear programming 

Garcia et al. (2004) Two-stage Procurement, production, 
distribution Multi-period Single. Integer linear  

programming 
Xie et al. (2006) Serial Production, storage Multi-period Single Fuzzy linear 
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par et al., 2003; Min and Zhou, 2002; Sar-miento and 
Nagi, 1999; Mishi et al., 2009). 

In order not to lose the essence of the study, the lit-
erature survey is restricted regarding some criteria. While 
doing this, the trend of the approach adopted moved 
from the general to the specific. For this aim, at first, the 
studies improving the mathematical programming mod-
els about integrated production-distribution planning are 
surveyed mostly (Altiparmak et al., 2006). Then, more 
specifically, the studies that are using the fuzzy mathe-
matical programming mo-dels are investigated. Lastly, 
by taking into consideration the area of activity of the 
business in the case study, the studies that have an inte-
grated approach on the production-distribution processes 
of petrol and petroleum products are surveyed. The lit-
erature survey is also restricted to the studies of the last 
decade. The papers reviewed in the literature survey by 
considering these priorities are given in the Table 1. 

3.  A FUZZY MULTI-OBJECTIVE LINEAR 
PROGRAMMING MODEL FOR A LPG 
DISTRIBUTION NETWORK  

3.1 Structure of the System and the Definition of 
the Problem 

The application of the study was carried out in a 
company which performs sourcing, storage, filling, and 
distribution of liquefied petroleum gas (LPG) in Turkey. 
The system under consideration consists of 6 main sup-
ply plants, 6 filling plants, and 82 main demand centers. 
LPG supplied from domestic refineries or foreign mar-
kets is transported to the main supply plants by pipelines 
or sea and land tanker fleets. After transportation, the 
LPG can be stored for later periods, or it can be trans-
ported to the other main supply plants and filling plants 
by tankers, or it can be filled to cylinders and distributed 
to the demand centers as bottled gas. The LPG which is 
transported from the main supply plants to the filling 
plants is filled to cylinders or stored for later periods.  

In the supply chain under consideration, for the 6 
planning periods, the amount of the LPG which will be 
supplied, stored, filled, and distributed in each period by 
each plant is determined. Information of between which 
of the main supply plants, filling plants and main demand 
centers transportation feasibility, as the data is taken from 
the company. the Together with these, the company in-
forms that the amount of LPG supplied from domestic 
refineries or foreign markets by the sixth main supply 
plant during the six periods should not exceed 10,000 
tons. In order to solve the problem, a fuzzy multi-objec-
tive linear programming model is built based on the pro-
cedure used by Liang (2006). In the model which aims 
to minimize both the total costs (total of the procure-
ment, filling, storage and transportation costs) and the 
total transportation distances, the demands of the main 
demand centers and the aspiration levels of the decision 
maker concerning the objective functions are fuzzy. 

3.2 Method 

In the solution of the fuzzy multi-objective supply 
chain planning model constructed for the system men-
tioned above, the method used in the study of Wang and 
Liang (2004) is applied, except for the interactive deci-
sion process which is the last step of this method. In this 
method, the fuzzy multi-objective linear programming 
model can be converted to an equivalent linear program-
ming model by using fuzzy goal programming method 
of Hannan (1981) and the fuzzy decision making method 
of Bellman and Zadeh (1970) together.  

This solution procedure is formed of the following 
steps (Liang, 2006). 

 
1) Original fuzzy multi-objective linear programming 

model is formed. 
2) Considering the given minimum acceptable member-

ship level (α), the constraints which have fuzzy right 
hand side values are converted to non-fuzzy con-
straints by using the weighted mean method. 

3) For each objective function (zg, g = 1, 2) the member-
ship values (μ(zg)) concerning some objective func-
tion values are determined.  

4) For every objective function, piecewise linear mem-
bership functions are sketched by using the points (zg, 
μ(zg)).  

5) For every membership function (μ(zg)) piecewise lin-
ear equations are constructed. 

6) Original fuzzy multi-objective supply chain model is 
converted to an equivalent classical linear program-
ming model after including the auxiliary variable ‘L’ 
to the model.  

 
In the procedure, piecewise linear membership func-

tions are used to represent fuzzy objectives and mini-
mum operator is used to aggregate fuzzy sets. Deriva-
tion of the method mentioned is given in the Appendix 1 
in detail. 

3.3 Assumptions 

The fuzzy multi-objective linear programming model 
is based on the assumptions listed below: 

 
1) Objective functions are fuzzy. 
2) Objective functions and all constraints are linear. 
3) Unit costs and distances between plants are definite 

and constant over the planning horizon.  
4) The distribution costs and the total transportation dis-

tances are directly proportional to the number of units 
transported.  

5) Triangular fuzzy numbers are adopted to represent the 
estimated demand.  

6) Fuzzy sets are represented by the piecewise linear 
membership functions.  

7) The minimum operator is used to aggregate fuzzy sets. 
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The first assumption is about the subjective differ-
ences between the opinions, evaluations, and prefer-
ences of the decision makers in the real life. The second, 
the third and the fourth assumptions are essential for the 
model constructed to be a linear programming model. 
The fifth assumption states that, triangular fuzzy num-
bers are used when explaining the estimated demand. In 
many studies, triangular fuzzy numbers are used be-
cause they make the calculations easier and decrease the 
data need (Chen and Lee, 2004; Kikuchi, 2000; Liang, 
2006; Shih, 1999). The sixth and the seventh assump-
tions are for the conversion of the fuzzy multi-objective 
problem to an equivalent linear programming structure 
(Liang, 2006). 

3.4 Construction of the Fuzzy Multi-Objective 
Linear Programming Model 

The parameters which are required for the model 
and obtained from the company are listed below: 
1) The most pessimistic, possible, and optimistic quanti-

ties of demands of the main demand centers. 
2) Tanker filling costs, tanker filling capacities and LPG 

purchase costs of the main supply centers. 
3) Cylinder filling costs, cylinder filling capacities, safety 

inventory levels, maximum inventory levels and the 
storage costs of the main supply centers and filling 
centers. 

4) The transportation distances between the plants and 
the demand centers. 

5) The information of between which plants or from 
which plants to which demand centers the transporta-
tion is feasible. 

 
The symbols below are used in the model constructed: 
 
• Objective Functions 
zg gth objective function 
L total aspiration level of decision maker about 

fuzzy objectives  
 
• Indices 
i  main supply plants  
j  filling plants 
k  main demand centers 
t  planning periods  
m  all main supply plants and filling plants (i + j) 
 
• Decision Variables: 
Ximt  quantity of LPG to be transported from main 

supply plant i to plant m in period t 
Yjkt  quantity of LPG to be transported from filling 

plant j to main demand center k in period t 
Zikt  quantity of LPG to be transported from main 

supply plant i to main demand center k in pe-
riod t 

Iit  inventory level of main supply plant i at the end 
of period t  

Njt  inventory level of filling plant j at the end of 
period t  

Qit  quantity of LPG to be procured from refineries 
by main supply plant i in period t  

DXijt  quantity of LPG to be transported from main 
supply plant i to filling plant j in period t 

AXmt  total quantity of LPG to be transported from all 
main supply plants to plant m in period t  

BXit  total quantity of LPG to be transported from all 
other main supply plants to main supply plant i 
in period t   

 
• Parameters: 
ci  purchase cost of a unit ton of LPG for the main 

supply plant i  
pi  filling cost of a unit ton of LPG to the tankers at 

the main supply plant i 
ri  filling cost of a unit ton of LPG to the LPG 

cylinders at the main supply plant i 
dcj  filling cost of a unit ton of LPG to the LPG 

cylinders at the filling plant j 
hi  inventory carrying cost of a unit ton of LPG for 

one period at the main supply plant i  
lcj  inventory carrying cost of a unit ton of LPG for 

one period at the filling plant j  
ecim  transportation cost of a unit ton of LPG deliv-

ered in tankers from main supply plant i to 
plant m 

fcik  transportation cost of a unit ton of LPG deliv-
ered in LPG cylinders from main supply plant i 
to main demand center k  

gcjk  transportation cost of a unit ton of LPG deliv-
ered in LPG cylinders from filling plant j to 
main demand center k  

ATimt  0–1 variable which takes the value of 1 if trans-
portation from main supply plant i to plant m is 
possible in period t and the value of 0 if not 

DMjkt  0–1 variable which takes the value of 1 if trans-
portation from filling plant j to main demand 
center k is possible in period t and the value of 
0 if not 

IMikt  0–1 variable which takes the value of 1 if trans-
portation from main supply plant i to main de-
mand center k is possible in period t and the 
value of 0 if not   

mesxim distance between the main supply plant i and 
the plant m  

mesyjk  distance between the filling plant j and the main 
demand center k  

meszik  distance between the main supply plant i and 
the main demand center k  

Gi  maximum inventory capacity of main supply 
plant i 

Lj  maximum inventory capacity of filling plant j  
Fi  safety inventory level of main supply plant i  
Mj  safety inventory level of filling plant j 
Si  tanker filling capacity of main supply plant i 

per one period  
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Wi  cylinder filling capacity of main supply plant i 
per one period  

Uj  cylinder filling capacity of filling plant j per 
one period  

ged +  positive deviation variables related to objective 
function g 

ged −  negative deviation variables related to objective 
function g 

 
The fuzzy multi-objective linear programming model 

constructed in order to determine the values of the deci-
sion variables for six periods (months) is as follows: 

 
i i i

1
1 1 1 1 1 1 1

T T M K

i it i imt i ikt
i t t i m i k

Min Z c Q p X r Z
= = = = = = =

⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞
≅ + +⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣
∑ ∑ ∑ ∑ ∑ ∑ ∑  

1 1

J K

j jkt
j k

dc Y
= =

⎤⎛ ⎞
+ ⎥⎜ ⎟⎜ ⎟⎥⎝ ⎠⎦
∑ ∑  

i

1 1 1 1 1 1

T M T K T

im imt ik ikt
i m t i k t

ec X fc Z
= = = = = =

⎡ ⎛ ⎞ ⎛ ⎞
+ +⎢ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎝ ⎠ ⎝ ⎠⎣
∑∑ ∑ ∑∑ ∑   

1 1 1

J K T

jk jkt
j k t

gc Y
= = =

⎤⎛ ⎞
+ ⎥⎜ ⎟⎜ ⎟⎥⎝ ⎠⎦
∑∑ ∑

i

1 1 1

J T

j jt
i j t

Ic N
= = =

⎛ ⎞
+ ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ ∑  (1) 

 
i

2
1 1 1 1 1 1

( ) ( )
M T J K T

im imt jk jkt
i m t j k t

Min Z mesx X mesy Y
= = = = = =

⎡ ⎤ ⎡ ⎤
≅ +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑∑ ∑ ∑∑ ∑  

i

1 1 1
( )

K T

ik ikt
i k t

mesz Z
= = =

⎡ ⎤
+ ⎢ ⎥

⎣ ⎦
∑∑ ∑  (2) 

 
S.T. 

1
10,000

T

it
t

Q
=

≤∑  ( 1, 2, , i)i =  ( 1, 2, , )t T=  (3) 

1

M

imt i
m

X S
=

≤∑  ( 1, 2, , i)i =  ( 1, 2, , )t T=  (4) 

1

K

ikt i
k

Z W
=

≤∑  ( 1, 2, , i)i =  ( 1, 2, , )t T=  (5) 

1

K

ikt j
k

Y U
=

≤∑  ( 1, 2, , )j J= ( 1, 2, , )t T=  (6) 

i i

1 1
ikt ikt kt

i j
Z Y D

= =
+ =∑ ∑  ( 1, 2, , i)i =  ( 1, 2, , )t T=  (7) 

i

1
imt m

i
X AX

=

≤∑  ( 1, 2, , i)i =  ( 1, 2, , )t T=  (8) 

1mt tAX BX=  (9) 

, 1
1 1

M K

it i t it it imt ikt
m k

I I Q BX X Z−
= =

= + + − −∑ ∑   

( 1, 2, , i)i =  ( 1, 2, , )t T=  (10) 

imt ijtX DX=  (11) 
i

, 1
1 1

K

jt j t ijt jkt
i k

N N DX Y−
= =

= + −∑ ∑  

( 1, 2, , )j J=  ( 1, 2, , )t T=  (12) 
( )( )imt imt imtZ AT X≤  

( 1, 2, , i)i = ( 1, 2, , )i i= ( 1, 2, , )t T=  (13) 

( )( )jkt jkt jktY DM Y≤  
( 1, 2, , )j J= ( 1, 2, , )k K= ( 1, 2, , )t T=  (14) 

( )( )ikt ikt iktZ IM Z≤   
( 1, 2, , i)i = ( 1, 2, , )k K= ( 1, 2, , )t T=  (15) 

i it iF I G≤ ≤  ( 1, 2, , i)i =  ( 1, 2, , )t T=  (16) 
j jt jM N L≤ ≤  ( 1, 2, , i)i =  ( 1, 2, , )t T=  (17) 

0 0iI =  (18) 
0 0iN =  (19) 

, , , , , 0imt jkt ikt it jt itX Y Z I N Q ≥  (20) 
 
The first objective function in Eq. (1) minimizes 

the total costs (the total of the procurement, filling, stor-
agee, and transportation costs) and the second objective 
function in Eq. (2) minimizes the total transportation 
distances. The symbol ‘ ≅ ’ represents the fuzziness of 
the aspiration levels of the decision makers related to 
these objective functions. The constraint (3) is related to 
the total amount of the LPG which the sixth main supply 
center can procure from the domestic refineries or for-
eign markets. The constraints about the periodic tanker 
filling capacities and the cylinder filling capacities of 
the main supply centers are stated in inequations (4) and 
(5), respectively. Restriction of the periodic cylinder fill-
ing capacities of the filling plants is stated in constraint 
(6). Constraint (7) is about the meeting of the demand. 
Constraint (10) ensure the inventory balance for the main 
supply centers and the filling plants respectively. The 
constraints (8), (11), and (12) are for the calculation of 
the intermediate values which are required in expressing 
the inventory balances and also for the assignment of some 
values to other new variables. The expressions (13)–(15) 
make the transportation amount ‘0’ if the transportation 
between the related plants is not possible. Constraints 
(16) and (17) assure that inventory levels of the main 
supply plants and filling plants are between the related 
safety inventory level and the maximum inventory level. 
Eqs. (18) and (19) state that there is no initial inventory 
at the plants and the constraint (20) ensures that none of 
the decision variables take negative values. 

3.5 Removing the Fuzziness in the Fuzzy 
Restrictions 

In this study, triangular fuzzy numbers are adopted 
to state the fuzzy demand quantities ( ktD ) of the demand 
centers and weighted mean method is adopted to convert 
these numbers to precise values. If the most pessimistic 
value ( p

ktD ), the most possible value ( m
ktD ), the most 

optimistic value ( o
kD ) for ktD  and the lowest acceptable 

membership level (α) is given, then the crisp statement 
of the fifth constraint will be as follows: 

, 2 , 3 ,
1 1

İ J
p m o

ikt jkt I kt kt kt
i j

Z Y w D w D w Dα α α
= =

+ = + +∑ ∑    

(k = 1, 2, …, K) ( t = 1, 2, …, T)   (31) 
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w1, w2, and w3 in Eq. (31) represent the weights of the 
most pessimistic, the most possible, and the most opti-
mistic values of the fuzzy demand quantities. These are 
subjective values that have a total of ‘1’ and depend on 
the experience and the knowledge of the decision maker. 
In some studies in the literature, the same values of 
weights and ‘α’ are used to remove the fuzziness of the 
fuzzy constraints (Lai and Hwang, 1992; Tanaka, 1984; 
Wang et al., 2004). In this study, weights and ‘α’ value 
are determined as w1 = w3 = 1/6, w2 = 4/6, and α = 0.5 
for the fifth constraint which is a fuzzy one. Since the 
most possible values for the demand quantities are more 
important than the extreme values, the highest weight is 
given to the most possible value. On the other hand, 
since the demand quantities take the most optimistic and 
pessimistic values rarely, the weight given to these val-
ues is rather low (Liang, 2006). 

3.6 Construction of the Membership Functions 
Related to the Objective Functions  

The formulation of membership functions for each 
objective function (zg, g = 1, 2) on the value of the ob-
jective function a few degrees of membership (μ(zg)) is 
determined. Section 3.4 of the model, these values are 
determined for the objective function and degree of 
membership are given in Table 2. 

The piecewise linear membership functions which 
are sketched for the objective functions by using the 
points (zg, μ(zg)) given in Table 2 are shown in Figure 
1(a) and (b).  

As seen in Table 2 and Figure 1(a)–(b), the deci-
sion maker definitely does not want a higher total cost 

than 375,000,000 currency. The decision maker will be 
completely satisfied when the total cost is lower than 
150,000,000 currency. The satisfaction level of the deci-
sion maker will be 80% when the total cost is 225,000,000 
currency, and 50% when it is 300,000,000 currency. Si-
milar comments can be made for the second objective 
function. 

3.7 Construction of the Piecewise Linear 
Equations for the Membership Functions 

Hannan’s approach (1981) is taken as a basis while 
constructing piecewise linear equations for the member-
ship functions (see step 3 in Appendix 1). By using this 
approach, the membership functions which are sketched 
in Figure 1 can be expressed as follows (Tanaka, 1984). 

 

1

1
9

1
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1

9
1

1
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2

2
9

2
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2
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⎪ >⎩
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Table 2. The values determined for the membership functions related to the objective functions 

z1 < 150,000,000 150,000,000 225,000,000 300,000,000 375,000,000 > 375,000,000
μ(z1) 1 1 0.8 0.5 0 0 

z2 < 90,000,000 90,000,000 120,000,000 150,000,000 180,000,000 > 180,000,000
μ(z2) 1 1 0.9 0.5 0 0 
 

μ(z1)

Total cost (million $)

225150 375300

1

0.8

0.6

0.4

0.2

0

(a) 

μ(z1)

Total transportation distance (km)

12090 180150

1

0.8

0.6

0.4

0.2

0

(b) 

Figure 1. The graph of the piecewise linear membership function (μ(z1)) related to the first objective function (z1). 
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3.8 Getting an Equivalent Linear Programming 
Model 

The existing model is converted to an equivalent 
linear programming model by including the deviation 
variables ( ged − , ged + ) and the auxiliary variable L to the 
model and by using the minimum operator to aggregate 
the fuzzy sets. The ‘L’ here is defined as the total satis-
faction level of the decision maker about all the fuzzy 
objectives (Liang, 2006). The model which is given be-
low is equivalent to the model in Section 3.4  
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3.9 The solution of the Model and the Evaluations 

The model is solved by using LINGO 8.0 package. 
The total cost is obtained as 168,990,400 currency and 
the total transportation distance is obtained as 98,236,740 
km. The satisfaction level of the decision maker on this 
result is obtained as 94.9%. 

The procedure used in this study, in which piecewise 
linear membership functions and minimum operator are 
used, is a method that generates efficient solution (Hannan, 
1981). It is explained by Zimmermann (1978) why the 
maximization of the solution always gives efficient solu-
tion in the cases where minimum operator is used. The 
problem considered in the study is also solved by using 
the Zimmermann’s method, goal programming, traditional 
single objective linear programming method (for each ob-
jective function, respectively) and the results are com-
pared (see Table 3). In the case where the objective func-
tions and demand quantities are considered fuzzily and 
the solution is obtained by Zimmermann’s method, the 
total cost is acquired as 169,001,600 cu and the total 
transportation distance is acquired as 97,600,640 km. 

The satisfaction level of the decision maker on this 
result is obtained as 91.5%. While solving the problem 
by using goal programming and linear programming, 
demand quantities, fuzziness of which are removed by 
using the weighted average method, are assumed to be 
the precise demand quantities. In addition to the solution 
produced by goal programming, in which objective func-
tions are not considered fuzzily, the solutions obtained 
by using the conventional linear programming method 
for each objective function respectively are also ana-
lyzed. If the table is investigated, it is seen that the effi-
cient solution produced by the suggested method gives 
better results simultaneously for both functions in com-
parison with the other methods and can easily be applied 
to real life problems.  

4.  SUMMARY  

The supply chains in the real life operate in uncer-
tain environments. The fact that the relations between 
the elements of the supply chain depend on the opera-
tions implemented by people is one of the main reasons 
of uncertainty in the supply chain systems. Besides this, 
the integrated structure of the supply chain increases the 
number of real data used in the system, hence the com-
plexity of the system substantially. The increment of the 
complexity of the system causes a decrease in the ability 
of individuals in explaining the behavior of the system 
certainly and meaningfully. 

In the conventional mathematical programming mo-
dels, even the system considered is fuzzy or has uncer-
tainties; the decision maker should have precise and com-
plete information. However, in the real supply chain plan-
ning problems, the decision maker has to optimize the 
conflicting objectives together in the fuzzy aspiration 

Table 3. The results of the solution of the problem by using different models 

Number of objective function 
Type of  

objective  
function 

Demand 
quantity Objective function L 

Total 
cost (currency) 

(z1) 

Total  
distance (km) 

(z2) 
The fuzzy multi-objective  

linear programming Multi Fuzzy Fuzzy max L 0.9494 168,990,000 98,236,740

Zimmermann’s method Multi Fuzzy Fuzzy max L 0.9155 169,001,600 97,600,640
Goal programming Multi Crisp Crisp min (d 1

-, d2
+)  169,270,800 95,471,620

Linear programming (min z1) Single Crisp Crisp min z1 1 168,990,400 98,355,290
Linear programming (min z2) Single Crisp Crisp min z2 1 189,762,400 95,471,620

 
Table 4. The determination of the membership levels related to the objection function values 

z1 > X10 X10 X11 X12 … X1P X1, P+1 < X1, P+1 
μ(z1) 0 0 q11 q12 … q1P 1 1 

z2 > X20 X20 X21 X22 … X2P X2, P+1 < X2, P+1 
μ(z2) 0 0 q21 q22 … q2P 1 1 

0 ≤ qge ≤ 1.0; qge ≤ qg, e+1 (g = 1, 2) (e = 1, 2, …, P). 
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and satisfaction levels. In addition, the parameters used 
in the problems are usually uncertain because of the lack 
of data or inaccessibility of the data required in the plan-
ning period. The fuzzy set theory is proved to be a suit-
able and useful tool that can be used in defining the real 
life uncertainties and dealing with them in planning, and 
the fuzzy mathematical programming one of the deci-
sion-making approaches based upon the fuzzy set theory. 

This study planned the procurement, production, 
storage, and distribution functions of a supply chain ope-
rating in a fuzzy environment, for six planning periods 
by using fuzzy multi-objective linear programming mo-
del. In the model that aims to minimize the total costs 
(procurement, filling, storage, and transportation costs) 
and the total transportation distance, the demand quanti-
ties concerning the main demand centers and the aspira-
tion levels of the decision maker about the objective 
functions are considered fuzzily. In the solution of the 
model, the method proposed by Wang and Liang (2004) 
is used; however, the interactive decision process which 
is the last step of this method is not implemented. The 
method integrates the fuzzy goal programming method 
of Hannan (1981) and fuzzy decision making method of 
Bellman and Zadeh (1970). The problem considered in 
the study is solved by using the Zimmermann’s method, 
goal programming, conventional single objective linear 
programming method (for each objective function, re-
spectively) and the results are compared. The conclusion 
is that the proposed method can easily be applied to ob-
tain efficient solutions to this kind of problems. Liang 
(2006) explained that, in general, if the decision maker 
wants the optimum values of the membership functions 
to be approximately equal or thinks that the usage of the 
minimum operators represents the case well, this me-
thod can be preferred to other methods. Goal program-
ming method that provides the approach to the objec-
tives sought to be achieved is a metod. Zimmermann’s 
method in the case of minimal operator is always active 
to give solution. In this study the total distance traveled 
by programming advantageously solution has been rea-
ched. Thus obtained solution is applicable. In this study, 
a simple programming model has been proposed solu-
tion aims at generating. 

In the future studies, the systems in which the pa-
rameters other than the demand quantities are fuzzy and 
the case that the fuzzy parameters are explained with 
different distributions other than the triangular distribu-
tion can be analyzed.  
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Appendix 1. Derivation of the Equivalent Linear Programming Model 

The equivalent linear programming model constructed for the solution of the fuzzy multi-objective linear program-
ming model problem is derived as explained below (Liang, 2006). 
 
Step 1: For each objective function (zg, g = 1, 2) the membership values (μ(zg)) related to some objective function val-

ues are determined by the decision maker as shown Table 4. 
Note: 0 ≤ qge ≤ 1.0; qge ≤ qg, e+1 (g = 1, 2) (e = 1, 2, …, P).  

Step 2: For each objective function, piecewise linear membership functions are sketched by using the points (zg, μ(zg)).  
Step 3: The membership function fg(zg) (g = 1, 2) is converted to the format below. 

 
Let  
αge = ( |tg, e+1| - |tge| )/2   
βg = (tg, P+1 + tg1)/2        
γg = (Sg, P+1 + Sg1)/2  be such that,  

μ(zg) = 
1

Pg

e=
∑ αge | zg – Xge | + βg zg + γg   g = 1, 2 (A.1) 

In (A.1), if the slope of the line segment between Xg, r-1 and Xgr is tgr, and if Sgr is the y-intercept of this line segment, 
then it is assumed that for every line segment Xg, r-1 ≤ zg ≤ Xgr in the piecewise linear membership function, fg(zg) = tgr 
zg + Sgr is satisfied. 
 
Step 4: Let Xge be the value of the objective function g at the eth point. The deviation variables ( ged − , ged + ) at the eth 

point are included to the model. 

 If ged +
 and ged −

 are defined as 

if 0
0 otherwise

g ge g ge
ge

z X z X
d + − − ≥⎧

= ⎨
⎩

 

if 0
0 otherwise

ge g g ge
ge

X z z X
d − − − <⎧

= ⎨
⎩

 

then the following equations are satisfied: 

( ged + )·( ged − ) = 0 (A.2)  
zg – Xge = ged + - ged −  (A.3)  
| zg – Xge | = ged + + ged −  (A.4) 

If Eq. (A.4) is substituted in Eq. (A.1), then the equations can be expressed as follows. 

zg – Xge = ged + – ged −   
( ged + )·( ged − ) = 0 
If   ged +  ≥ 0 and 

ged −  ≥ 0, then 

μ(zg) = 
1

Pg

ge
e=
α∑ ( ged + + ged − ) + βg zg + γg g = 1, 2 (A.5)  

If all the membership functions (μ(zg)) in Eq. (A.5) are concave and piecewise linear, then Eq. (A.2) is trivially satis-
fied, so that this condition is not needed. In other words, if all the objectives and constraints in the original model are 
linear and if all the membership functions are concave and piecewise linear, then a solution to the problem can be ob-
tained by solving a linear programming model in standard form (Hu and Fang, 1999). 
 
Step 5: The model is converted to an equivalent linear programming model by including the auxiliary variable ‘L’ to 

the model and by using minimum operator for aggregating the fuzzy sets. The ‘L’ here can be defined as the 
total satisfaction level of the decision maker about all the fuzzy objectives (Liang, 2006). 




