• 제목/요약/키워드: Transport particle

검색결과 508건 처리시간 0.024초

하구수와 표사의 상호작용에 관한 연구 (A Study on Interaction of Estuarial Water and Sediment Transport)

  • 이호;이중우
    • 한국항만학회지
    • /
    • 제14권4호
    • /
    • pp.451-461
    • /
    • 2000
  • The design and maintenance of navigation channel and water facilities of an harbor which is located at the mouth of river or at the estuary area are difficult due to the complexity of estuarial water and sediment circulation. Effects of deepening navigable waterways, of changing coastline configurations, or of discharging dredged material to the open sea are necessary to be investigated and predicted in terms of water quality and possible physical changes to the coastal environment. A borad analysis of the transport mechanism in the estuary area was made in terms of sediment property, falling velocity, concentration and flow characteristics. In order to simulate the transport processes, a two-dimensional finite element model is developed, which includes erosion, transport and deposition mechanism of suspended sediments. Galerkin’s weighted residual method is used to solve the transient convection-diffusion equation. The fluid domain is subdivided into a series of triangular elements in which a quadratic approximation is made for suspended sediment concentration. Model could deal with a continuous aggregation by stipulating the settling velocity of the flocs in each element. The model provides suspended sediment concentration, bed shear stress, erosion versus deposition rate and bed profile at the given time step.

  • PDF

전방추적법에 의한 오염물질의 전송 모델 (A Pollutant Transport Model by the Forward-Tracking Method)

    • 한국해안해양공학회지
    • /
    • 제10권1호
    • /
    • pp.37-44
    • /
    • 1998
  • 본 연구에서 제안하는 혼합 방법(hybrid method)은 흐름이 우세한 영역에서의 전송 문제를 정확하고 효과적으로 해결하기 위하여 개발된 것으로 오일러-라그란쥐적 방법과는 달리 전방추적에 의하여 이송 과정이 수행되므로 보간 기법이 불필요하고 무작위 행보에 의한 라그란쥐적 방법과 달리 유한 차분법에 의하여 확산 과정이 수행되므로 많은 입자가 요구되지도 않는다. 한 점에 순간적으로 부하되는 오염원과 연속적으로 부하되는 오염원에 대한 이론적인 해와 비교하여 확산 계수와 무관하게 상당히 만족할 만한 결과를 얻었다. 현 방법은 또한 2차원 상에서 주변 5격자로부터 보간하는 오일러-라그란쥐적 방법과 무작위 행보로 입자 추적하는 순수 라그란쥐적 방법과 비교하여 정확성은 물론 계산 시간에 있어서도 상당히 월등한 방법임이 입증되었다.

  • PDF

CFD-DEM 연계기법을 활용한 고정식 해양구조물의 모노파일 주위 유동 및 세굴해석 (Flow and Scour Analysis Around Monopole of Fixed Offshore Platform Using Method that Couples Computational Fluid Dynamics and Discrete Element Method)

  • 송성진;전우영;박선호
    • 한국해양공학회지
    • /
    • 제33권3호
    • /
    • pp.245-251
    • /
    • 2019
  • When an offshore foundation is exposed to waves and currents, local scour could develop around a pile and even lead to structural failure. Therefore, understanding and predicting the scour due to sediment transport around foundations are important in the engineering design. In this study, the flow and scour around a monopole foundation exposed to a current were investigated using a method that coupled the computational fluid dynamics (CFD) and discrete element method (DEM). The open source computation fluid dynamics library OpenFOAM and a sediment transport library were coupled in the OpenFOAM platform. The incipient motion of the particle was validated. The flow fields and sediment transport around the monopole were simulated. The scour depth development was simulated and compared with existing experimental data. For the upstream scour hole, the equilibrium scour depth could be reproduced qualitatively, and it was underestimated by about 23%.

동력학-전달 모델을 활용한 식품 폐기물 감량 해석 (Simulative Calculations of Food Waste Reduction Using Kineto-transport Models)

  • 조선주;김태욱;권성현;조대철
    • 한국환경과학회지
    • /
    • 제30권6호
    • /
    • pp.429-439
    • /
    • 2021
  • Food waste is both an industrial and residential source of pollution, and there has been a great need for food waste reduction. As a preliminary step in this study, waste reduction is quantitatively modeled. This study presents two models based on kinetics: a simple kinetic model and a mass transport-shrinking model. In the simple kinetic model, the smaller is the reaction rate constant ratio k1, the lower the rate of conversion from the raw material to intermediate products. Accordingly, the total elapsed reaction time becomes shorter. In the mass transport-shrinking model, the smaller is the microbial decomposition resistance versus the liquid mass transfer resistance, the greater is the reduction rate of the radius of spherical waste particles. Results showed that the computed reduction of waste mass in the second model agreed reasonably with that obtained from a few experimantal trials of biodegradation, in which the microbial effect appeared to dominate. All calculations were performed using MATLAB 2020 on PC.

An hp-angular adaptivity with the discrete ordinates method for Boltzmann transport equation

  • Ni Dai;Bin Zhang;Xinyu Wang;Daogang Lu;Yixue Chen
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.769-779
    • /
    • 2023
  • This paper describes an hp-angular adaptivity algorithm in the discrete ordinates method for Boltzmann transport applications with strong angular effects. This adaptivity uses discontinuous finite element quadrature sets with different degrees, which updates both angular mesh and the degree of the underlying discontinuous finite element basis functions, allowing different angular local refinement to be applied in space. The regular and goal-based error metrics are considered in this algorithm to locate some regions to be refined. A mapping algorithm derived by moment conservation is developed to pass the angular solution between spatial regions with different quadrature sets. The proposed method is applied to some test problems that demonstrate the ability of this hp-angular adaptivity to resolve complex fluxes with relatively few angular unknowns. Results illustrate that a reduction to approximately 1/50 in quadrature ordinates for a given accuracy compared with uniform angular discretization. This method therefore offers a highly efficient angular adaptivity for investigating difficult particle transport problems.

The methods of CADIS-NEE and CADIS-DXTRAN in NECP-MCX and their applications

  • Qingming He;Zhanpeng Huang;Liangzhi Cao;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2748-2755
    • /
    • 2024
  • This paper presents two new methods for variance reduction for shielding calculation in Monte Carlo radiation transport. One method is CADIS-NEE, which combines Consistent Adjoint Driven Importance Sampling (CADIS) and next-event estimator (NEE) methods to increase the calculation efficiency of tallies at points. The other is CADIS-deterministic transport (DXTRAN), which combines CADIS and DXTRAN to obtain higher performance than using CADIS and DXTRAN separately. The combination processes are derived and implemented in the hybrid Monte-Carlo-Deterministic particle-transport code NECP-MCX. Various problems are tested to demonstrate the effectiveness of the two methods. According to the results, the two combination methods have higher efficiency than using CADIS, NEE or DXTRAN separately. In a long-distance photon-transport problem, CADIS-NEE converges faster than NEE and the figure of merit (FOM) of CADIS-NEE is 75.6 times of NEE. In a labyrinthine problem, CADIS-DXTRAN's FOM surpasses that of DXTRAN and CADIS by a factor of 45.3 and 17.7, respectively. Therefore, it is advisable to employ these two novel methods selectively in appropriate scenarios to reduce variance.

Chemical Properties of the Individual Asian Dust Particles Clarified by Micro-PIXE Analytical System

  • Ma, Chang-Jin;Kang, Gong-Unn;Kasahara, Mikio;Tohno, Susumu
    • Asian Journal of Atmospheric Environment
    • /
    • 제8권3호
    • /
    • pp.154-161
    • /
    • 2014
  • The present study was undertaken to evaluate the chemical characteristics of Asian dust (hereafter called "AD") particles with the aid of the most advanced micro-PIXE (Particle-induced X-ray emission) analytical technique. To this end, size-selected particles were sampled on a rural peninsula of Korea (Byunsan, 35.37N; 126.27E) during AD and non-AD periods in 2004. The coarse particle (> $2{\mu}m$) number density during an AD event were 170 times higher than those of the non-AD counterpart. The average net-count of silica in individual particles collected on AD event was roughly 11 times higher than that of non-AD counterpart. The X-ray net-counts of trace elements (Zn, Co, Mn, and V) were also considerably high in AD relative to the non-AD day. Particle classification based on the inter ratio analysis of elemental net-count suggests that a large portion of the coarse particles collected during AD event underwent chemical transformation to a certain degree. The visual interpretation of micro-PIXE elemental maps and elemental localization data in and/or on individual AD particles clarified the internal mixture of AD particles with sea-salt and artificial metallic particles.

Effects of Water Chemistry on Aggregation and Soil Adsorption of Silver Nanoparticles

  • Bae, Sujin;Hwang, Yu Sik;Lee, Yong-Ju;Lee, Sung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • 제28권
    • /
    • pp.6.1-6.7
    • /
    • 2013
  • Objectives In this study, we investigated the influence of ionic strength and natural organic matter (NOM) on aggregation and soil adsorption of citrate-coated silver nanoparticles (AgNPs). Methods Time-resolved dynamic light scattering measurements and batch adsorption experiments were used to study their aggregation and soil adsorption behaviors, respectively. Results The aggregation rate of AgNPs increased with increasing ionic strength and decreasing NOM concentration. At higher ionic strength, the AgNPs were unstable, and thus tended to be adsorbed to the soil, while increased NOM concentration hindered soil adsorption. To understand the varying behaviors of AgNPs depending on the environmental factors, particle zeta potentials were also measured as a function of ionic strength and NOM concentration. The magnitude of particle zeta potential became more negative with decreasing ionic strength and increasing NOM concentration. These results imply that the aggregation and soil adsorption behavior of AgNPs were mainly controlled by electrical double-layer repulsion consistent with the Derjaguin-Landau-Verwey-Overbeek theory. Conclusions This study found that the aggregation and soil adsorption behavior of AgNPs are closely associated with environmental factors such as ionic strength and NOM and suggested that assessing the environmental fate and transport of nanoparticles requires a thorough understanding of particle-particle interaction mechanisms.

The Quality Investigation of 6H-SiC Crystals Grown by a Conventional PVT Method with Various SiC Powders

  • Yeo, Im-Gyu;Lee, Tae-Woo;Lee, Won-Jae;Shin, Byoung-Chul;Choi, Jung-Woo;Ku, Kap-Ryeol;Kim, Young-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.61-64
    • /
    • 2010
  • In this paper, we investigate the quality difference of SiC crystals grown by a conventional physical vapor transport method using various SiC powders. While the growth rate was revealed to be dependent upon the particle size of the SiC powder, the growth rate of SiC bulk crystals grown using SiC powder with a smaller particle size (20 nm) was definitely higher than those using lager particle sizes with $0.1-0.2\;{\mu}m$ and $1-10\;{\mu}m$, respectively. All grown 2 inch SiC single crystals were proven to be the polytype of 6H-SiC and the carrier concentration levels of about $10^{17}\;cm^3$ were determined from Hall measurements. It was revealed that the particle size and process method of SiC powder played an important role in obtaining a good quality, high growth rate, and to reduce growth temperature.

입자모델을 이용한 서브마이크론 게이트 GaAs MESFET 특성의 해석 (Analysis of Submicron Gate GaAs MESFET's Characteristics Using Particle Model)

  • 문승환;정학기;김봉렬
    • 대한전자공학회논문지
    • /
    • 제27권4호
    • /
    • pp.534-540
    • /
    • 1990
  • In this paper the characteristics of submicron gate GaAs MESFET's have been studied using a particle model which takes into account the hot-electron transport phenomena, i.e., the velocity overshoot. \ulcornervalley(<000> direction), L valley (<111>direction), X valley (<100>direction) as the GaAs conduction energy band and optical phonon, acoustic phonon, equivalent intervalley, nonequivalent intervalley scattering as the scattering models, have been considered in this simulation. And the GaAs material and the device simulation have been done by determination of the free flight time, scattering mechanism and scattering angle according to Monte-Carlo algorithm which makes use of a particle model. As a result of the particle simulation, firstly the electron distribution, the potential energy distribution and the situation of electron displacement in 0.6 \ulcorner gate length device have been obtained. Secondly, the cutoff frequency, obtained by this method, is k47GHz which is in good agreement with the calculated result of theory. And the current-voltage characteristics curve which takes account of the buffer layer effect has been obtained. Lastly it has been verified that parasitic current at the buffer layer can be analyzed using channel depth modulation.

  • PDF