• Title/Summary/Keyword: Transport Chain

Search Result 278, Processing Time 0.036 seconds

Unusual Facilitated Olefin Transport through Polymethacrylate/Silver Salt Complexes

  • Kim, Jong-Hak;Joo, Seung-Hwan;Kim, Chang-Kon;Kang, Yong-Soo;Jongok Won
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.375-381
    • /
    • 2003
  • Silver salt complex membranes with glassy poly(methyl methacrylate) (PMMA) unexpectedly showed higher propylene permeance than those with rubbery poly(butyl methacrylate) (PBMA) where as neat PMMA is much less permeable to propylene than that of neat PBMA. Such unusual facilitated olefin transport has been systematically investigated by changing the side chain length of polymethacrylates (PMAs) from methyl, ethyl to butyl. The ab initio calculation showed almost the same electron densities of the carbonyl oxygens in the three PMAs, expecting very similar intensity of the interaction between carbonyl oxygen and silver ion. However, the interaction intensity decreases with the length of the alkyl side chain: PMMA > PEMA > PBMA according to wide angle X-ray scattering and FT-Raman spectroscopy. The difference in the interaction intensity may arise from the difference in the hydrophilicity of the three PMAs, as confirmed by the contact angle of water, which determines the concentrations of the ionic constituents of silver salts: free ion, contact ion pair and higher order ionic aggregate. However, propylene solubilities and facilitated propylene transport vary with the side chain length significantly even at the same concentration of the free ion, the most active olefin carrier, suggesting possible difference in the prohibition of the molecular access of propylene to silver ion by the side chains: the steric hindrance. Therefore, it may be concluded that both the hydrophilicity and the steric hindrance associated with the side chain length in the three PMAs are of pivotal importance in determining facilitated olefin transport through polymer/silver salt complex membranes.

Electrical and transport properties of carbon chains encapsulated within CNT

  • KIM, Tae Hyung;KIM, Hu Sung;KIM, Yong-Hoon
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.457-462
    • /
    • 2017
  • A linear carbon chain with pure sp hybridization has been intensively studied for the application of its intrinsic electrical properties to electronic devices. Owing to the high chemical reactivity derived from its unsaturated bond, encapsulation by carbon nanotubes (CNT) is provided as a promising method to stabilize the geometry of the linear carbon chain. Although the influence of CNT on the carbon chain has extensively been studied in terms of both electronic structure and geometries, the electron transport properties has not been discussed yet. In this regard, we provide the systematic atomic-scale analyses of the properties of the linear carbon chain within CNT based on a computational approach combining density-functional theory (DFT) and matrix green function (MGF) method. Based on the DFT calculations, the influence of CNT on electronic structures of the linear carbon chain is provided as well as its electrical origin. Via MGF calculations, we also identify the electron transport properties of the carbon chain - CNT complex.

  • PDF

Optimum Design of a Tubular Link Chain Conveyor for Sludge Transport (슬러지 이송용 튜브형 링크체인 컨베이어의 최적설계)

  • Kim, Bong-Hwan;Jeong, Young-Jae;Lee, Chang-Ryeol
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.830-835
    • /
    • 2018
  • The tubular link chain conveyor works under very extreme conditions such as high tensile load, friction, and dangerous operating environments. In this study, we propose an optimal design plan for reducing cost and improving performance through weight reduction of tubular link chain conveyors for sludge transport. For light weight of tubular link chain conveyor, the optimization software using SHERPA algorithms, HEEDS was used in conjunction with ANSYS Mechanical V14.5, which is widely used in structural analysis, to achieve optimal tubular link chain. Through the optimization process, 19% light weight was achieved.

A Nuclide Decay Chain Transport Model by the Method of Characteristics

  • Lee, Youn-Myoung;Kang, Chul-Hyung;Hahn, Pil-Soo;Chun, Kwan-Sik
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.320-326
    • /
    • 1997
  • The nuclide transport in the one-dimensional porous medium is considered as a first step in developing a decay chain transport in multidimensional inhomogeneous media. A method of solving conventional advection-dispersion equation with decay chain of arbitrary length by using the method of characteristics (MOC) is introduced. In specific cases where the advection are dominant rather than dispersion, the method is known to be useful : one of the most distinctive advantages in applying the model is that the MU minimizes the numerical dispersion, which is distinguished in such common numerical schemes as finite element method and finite difference method. The suggested model is considered to be effective through several illustrations for the case that decay chain of arbitrary length is involved during transport which is difficult to solve by standard numerical solutions if the medium becomes more complicated.

  • PDF

A Control Volume Scheme for Three-Dimensional Transport: Buffer and Matrix Effects on a Decay Chain Transport in the Repository

  • Lee, Y.M.;Y.S. Hwang;Kim, S.G.;C.H. Kang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.218-231
    • /
    • 2002
  • Using a three-dimensional numerical code, B3R developed for nuclide transport of an arbitrary length of decay chain in the buffer between the canister and adjacent rock in a high- level radioactive waste repository by adopting a finite difference method utilizing the control- volume scheme, some illustrative calculations have been done. A linear sorption isotherm, nuclide transport due to diffusion in the buffer and the rock matrix, and advection and dispersion along thin rigid parallel fractures existing in a saturated porous rock matrix as well as diffusion through the fracture wall into the matrix is assumed. In such kind of repository, buffer and rock matrix are known to be important physico-chemical harriers in nuclide retardation. To show effects of buffer and rock matrix on nuclide transport in HLW repository and also to demonstrate usefulness of B3R, several cases of breakthrough curves as well as three- dimensional plots of concentration isopleths associated with these two barriers are introduced for a typical case of decay chain of $^{234}$ Ulongrightarrow$^{230}$ Thlongrightarrow$^{226}$ Ra, which is the most important chain as far as the human environment is concerned.

Prospects and Problems in the Study of Geography related to the Concept of Commodity, Transport, and Supply Chains (상품.교통.공급사슬개념과 관련된 지리학의 연구와 과제)

  • Han, Ju-Seong
    • Journal of the Korean Geographical Society
    • /
    • v.44 no.6
    • /
    • pp.723-744
    • /
    • 2009
  • The purpose of this paper is to clarify the prospects and problems in the study of geography related to the concept of commodity, transport, and supply chains. The geography studies related to commodity chains are expanded to each field of industry focusing on the subjects and economic difference which lead the commodity chain in core and periphery regions. These vertical connection are studied with the political economy approach that gives attention to geographical pattern of agricultural products and foods. But in viewpoint of commodity circuit and commodity network, the culture or subjects of micro regions and interaction are also studied. The contents of these study are to clarify the importance of cultural turn and local. And the study of chain standpoint appears that the series of transport process by transportation modes can be understood by transport chains and the physical distribution process of sea freight is to be grasped by supply chains.

The Role of Membranes and Intracellular Binding Proteins in Cytoplasmic Transport of Hydrophobic Molecules : Fatty Acid Binding Proteins and Long Chain Fatty Acids (세포내 소수성 물질 이동에서 막과 세포내 결합단백질의 역살 : 지방산 결합 단밸직과 장쇄 지방산)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.6
    • /
    • pp.658-668
    • /
    • 1997
  • Path of a small hydrophobic molecule through the aqueous cytoplasma is not linear. Partition may favor membrane binding by several orders of magnitude : thus significant membrane association will markedly decrease the cytosolic transport rate. The presence of high concentration of soluble binding proteins for these hydrophobic molecules would compete with membrane association and thereby increase transport rate. For long chain fatty acid molecules, a family of cytosolic binding proteins collectively known as the fatty acid binding proteins(FABP), are thought to act as intracellular transport proteins. This paper examines the mechanism of transfer of fluorescent antyroyloxy-labeled fatty acids(AOFA) from purified FABPs to phosholipid membranes. With the exception of the liver FABP, AOFA is transferred from FABP by collisional interaction of the protein with a acceptor membrane. The rate of transfer increased markedly when membranes contain anionic phospholipids. This suggests that positively charged residues on the surface of the FABP may interact with the membranes. Neutralization of the surface lysine residues of adipocyte FABP decreased fatty acid transfer rate, and transfer was found to proceed via aqueous diffusion rather than collisional interaction. Site specific mutagenesis has further shown that the helix-turn-helix domain of the FABP is critical for interaction with anionic acceptor membranes. Thus cytosolic FABP may function in intracellular transport of fatty acid to decrease their membranes association as well as to target fatty acid to specific subcellular sites of utilization.

  • PDF

Measurement of Delivery Service Environment for Cold Chain EPS Packaging System of Fresh Food (신선식품 콜드체인 EPS 패키징 시스템의 택배 유통환경 계측)

  • KORAKOT, CHAROENSRI;Kim, SY;Shin, YJ;Jung, HM;Park, JM
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.67-73
    • /
    • 2022
  • The food cold chain refers to a technology and distribution supply chain applied to maintain a constant temperature suitable for the product from production (harvest) to delivery to consumers. In particular, in Korea, the insulation material used in the food cold chain is mostly EPS (Expanded Polystyrene), which is used as a transport container for various food cold chains. However, according to the government's eco-friendly policy, companies charge environmental contributions to the use of EPS, but due to its low price and convenience of handling, it is still used as a container for delivering food. In this study, in order to measure the domestic delivery environment of general refrigerated foods, changes in impact, temperature, and humidity during transport of the EPS packaging system containing foods and ice pack refrigerants were measured. As a result, there were 2?3 sections in which a high impact force of 40 G or more was generated during transport. This can cause damage to the product and EPS container. The difference in temperature and humidity changes by parcel transport routes is more than 30%, so it is necessary to present accurate standards for the domestic cold chain distribution environment. As a result of microbial experiments. the transportation period had a dominant effect on the increase in total viable count and E. coli count.

Gas Hydrate Supply Chain analyses of economy for the natural gas transportation (천연가스 수송을 위한 Gas Hydrate Supply Chain의 경제성 분석)

  • Kim, Cheoulho;Lee, Jaeik;Jeong, Taeseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.151.1-151.1
    • /
    • 2010
  • Natural gas hydrates (NGH) provide 170 gas volumes per unit volume of the medium and are easier to make with moderate pressure and temperature (40 bar at 3 C). Once they form, their preservation temperature is 20 C at 1 bar, which is much milder than the LNG preservation. In case of using the NGH, The small and medium sized gas well has advantages for development because of NGH's these characteristics. According to the cost evaluation report of Gudmundsson in Norway and the research of MES in Japan, the gas well that uses the NGH has a cost saving effect about 10~20% compared LNG. The effect depends on distance and production. However, cost saving and efficiency of liquefaction process is increased by the development of LNG liquefaction technology. Therefore, these factors have to be reflected in economic analysis. The purpose of this research is to compare the cost of Gas Supply Chain according to the transport type, distance and gas reserves. Especially, we consider not only the cost of facility but also the total cost (production cost, transport cost, etc).

  • PDF

Continuous Time Markov Process Model for Nuclide Decay Chain Transport in the Fractured Rock Medium (균열 암반 매질에서의 핵종의 붕괴사슬 이동을 위한 연속시간 마코프 프로세스 모델)

  • Lee, Y.M.;Kang, C.H.;Hahn, P.S.;Park, H.H.;Lee, K.J.
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.539-547
    • /
    • 1993
  • A stochastic approach using continuous time Markov process is presented to model the one-dimensional nuclide transport in fractured rock media as a further extension for previous works[1-3]. Nuclide transport of decay chain of arbitrary length in the single planar fractured rock media in the vicinity of the radioactive waste repository is modeled using a continuous time Markov process. While most of analytical solutions for nuclide transport of decay chain deal with the limited length of decay chain, do not consider the case of having rock matrix diffusion, and have very complicated solution form, the present model offers rather a simplified solution in the form of expectance and its variance resulted from a stochastic modeling. As another deterministic way, even numerical models of decay chain transport, in most cases, show very complicated procedure to get the solution and large discrepancy for the exact solution as opposed to the stochastic model developed in this study. To demonstrate the use of the present model and to verify the model by comparing with the deterministic model, a specific illustration was made for the transport of a chain of three member in single fractured rock medium with constant groundwater flow rate in the fracture, which ignores the rock matrix diffusion and shows good capability to model the fractured media around the repository.

  • PDF