• Title/Summary/Keyword: Transplanting capacity

Search Result 42, Processing Time 0.032 seconds

Development of a Vegetable Transplanting Robot

  • Kang, Dong-Hyeon;Kim, Dong-Eok;Lee, Gong-In;Kim, You-Ho;Lee, Hye-Jin;Min, Young-Bong
    • Journal of Biosystems Engineering
    • /
    • v.37 no.3
    • /
    • pp.201-208
    • /
    • 2012
  • Purpose: This study was conducted to develop a vegetable transplanting robot which transplants seedlings from a nursery tray to a plant pot using its four fingers. Method: The robot consists of the transplanting part, nursery tray moving part, plant pot moving part, main frame and controller. Two moving parts are controlled by the photo sensor and servo motor. The transplanting part was composed with two components; transporting device using E-MY2H(SMC Corp., Japan) for controlling finger position accurately and finger for transplanting the seedling. Results: Head lettuce using the transplanting robot was transplanted in 21 days after sowing based upon the seed shape measurement and removing examination. The optimal finger shape was thin pin type because it caused minimum damage to the roots of seedlings. Conclusions: The four inclined pin type was applied to remove the seedlings from the nursery tray. In addition, the transplanting capacity of the developed robot was 2800 pots per hour and the rate of success was 99% and above.

Transferring Innovation Capacities to Developing Countries: A KIST-based Strategy (기술혁신역량의 개도국 전수를 위한 전략 연구: KIST사례를 중심으로)

  • Lee, Chang G.;Kim, Jong Joo;Chung, Sun Yang
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.3
    • /
    • pp.709-731
    • /
    • 2017
  • Great attention has been paid to absorptive capacity (AC) as a means of technological innovation. However, few developing countries have demonstrated real success in the development of their technologies and economies. Global issues such as climate change, contagious disease, etc. require more active cooperation between developing and developed countries. This paper makes the novel argument that the donor's transplanting capacity (TC) should be developed and coevolved in concert with the recipient country's AC. Review of the literature shows that AC depends on a prior knowledge base and an intensity of effort. In this article, we analysed the case of KIST and suggest that codification of development experience, localization of innovation capacity, and donor committment comprise the core elements of TC. Nonaka (1994) argued that interaction between tacit knowledge and explicit knowledge can synergize to increase the overall store of available knowledge. Development experience, which leans heavily toward tacit knowledge, should be transformed into explicit knowledge for more efficient technology diffusion. The technological environments of recipient countries vary from those of their donors, which is why innovation capacity should conform to local conditions in order to make transplantation smoother. Donor committment is also critical for successfully transmitting valuable experience.

Analysis of Working Capacity of a Hand-fed Transplanter (반자동정식기 작업 성능 분석)

  • 문성동;민영봉;박중춘
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.159-167
    • /
    • 1997
  • To cope with the mass-production and supply of plug seedling, the supply of transplanters is necessary. In the study, a transplanting test was carried out to find the optimum working condition in the mechanizd transplantation and to acquire the basic data for the improvement of transplanters by the research and analysis of working capacity of the local manual transplanters. The size of hopper affected transplanting stand and rate. Re-irrigation was required for the transplanted seedlings because they wilt 1 day after the transplanting if soil compaction is incomplete. Consequently, back-forth-left-right compaction method was good for soil covering and compaction. It may be thought to increase the amount of irrigation water at the time of transplanting by double-irrigation mechanism, but it needs to increase the larger water tank which makes the operation uneasy. So, assuming the working model by 1 or 2 operators with the machine size as small as possible, it seemed that eliminating of automatic irrigation method was desirable in view of efficiency. Though semiautomatic transplanter needs some structural improvements, it seemed still suitable for transplanting of plug seedlings such as 45-day red pepper seedlings in 128-hole tray and 25-day Chinese cabbage seedling in 128-hole tray. If traveling speed of the transplanter is limited to less than 14 m/min, with the transplanting depth of 2~3cm and transplanting space of 30cm.

  • PDF

Elicitation of Chilling Tolerance of Pepper Seedlings Using UV-A LED (UV-A LED을 이용한 고추 묘의 저온 내성 유도)

  • Park, Song-Yi
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.273-279
    • /
    • 2020
  • BACKGROUND: After transplanting, the recent abnormal low temperature caused physiological disorders of pepper seedlings. This study was conducted to evaluate the effects of UV-A LED, a physical elicitor, on the chilling tolerance of pepper seedlings. METHODS AND RESULTS: Seedlings were continuously irradiated with 370 and 385 nm UV-A LEDs with 30 W·m-2 for 6 d. After that, seedlings were exposed to 4℃ for 6 h and then recovered under the normal growing condition for 2 d. There were no significant differences in growth characteristics of UV-A treatments compared to the control. Fv/Fm values of two UV-A treatments were below 0.8. Electrolyte leakage in the control was increased by chilling stress, while 385 nm UV-A had the significantly lowest value. Total phenolic content and antioxidant capacity of two UV-A treatments significantly increased due to UV-A radiation. However, total phenolic content and antioxidant capacity of the control increased due to chilling stress and tended to decrease again during the recovery time. CONCLUSION: We confirmed that UV-A light was effective to induce the chilling tolerance of pepper seedling, and the supplemental radiation of 385 nm UV-A LED before transplanting could be used as a cultivation technique to produce high quality pepper seedlings.

지하수위를 고려한 양수량 추정

  • 박승기;이승기;정재훈;강성민
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.13-16
    • /
    • 2002
  • The analysis of characteristics of pumping in the small tube well for agriculture were surveyed. Study area was located at the Galsinri in Yesangun near the yedang reservoir. Agricultural electricity using rates for pumping, ground water level and volume of pumping was monitored every week. Pump working ratio and pump efficiency during period of transplanting of rice showed 48.9%, 62.7% respectively.

  • PDF

Development of a Robotic Transplanter for Pot-Seedlings of Plant Factory (식물공장용 포트묘 로봇 이식기 개발)

  • 류관희;김기영;류영선;한재성;신태웅
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.277-284
    • /
    • 1998
  • This study was conducted to develop m automatic pot-seedling transplanter for plant factory. The transplanter consists of a gripper, row-spacing control device, nursing tray transfer system, growing trough transfer system, and gripper moving device. The gripper picks up pot-seedling. The gripper moving device moves the gripper between nursing tray and growing-flat. Nursing trays are moved to workspace by the nursing tray transfer system. The growing trough transfer system was developed to move growing trough to workspace. The row-spacing control device was used to adjust the distance between adjacent plants traversely. The results of this study are as follows. The transplanting capacity of the developed transplanter was 7.1 seconds per cycle or 1.18 second per pot-seedling. Successful planting was 98.9% without seedlings and 95.8% with seedlings.

  • PDF

Effects of the Early Soil Moisture Content on the Growth and Chemical Components of Tobacco (Nicotiana tabacum L.) (이식초기 토양수분차이가 담배의 생육 및 내용성분에 미치는 영향)

  • 한종구;윤병익;반유선;손응룡
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.3 no.2
    • /
    • pp.103-108
    • /
    • 1981
  • This experiment was carried out to investigate effects of soil moisture content on the growth of tobacco plant at early stage after transplanting. Soil moisture was controlled to be 30%, 45%, 60%, 75% and 90% of the maximum water holding capacity (38.7%), and treated for 10, 20 and 30 days. Budding flowering and topping were delayed in the 30% and 45% treatment where soil moisture was deficient. Plant height, number of leaves, and length and width of the largest leaf were the best in the 75% treatment for 10 days, and development of the root and top was the best also in the same treatment. As the duration of low soil moisture treatment prolonged, intercellular space , became small. Nitrogen and potassium of the cured leaf showed the highest value in 30% and 45% treatments. Nicotine content of the cured leaf was high in the 90% treatment, and reducing sugar content of that was high in the 75% treatment for 10 days.

  • PDF

Development of drought Tolerant Temperate Rice Variety by Pyramiding QTLs, Pup1 and DTY4.1

  • Jae-Hyuk Han;Na-Hyun Shin;Ian Paul Navea;Jin-Woo Lee;IL-Ryong Choi;Joong Hyoun Chin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.206-206
    • /
    • 2022
  • Sustainable agriculture is a potential strategy to enable agricultural cultivation systems to feed the growing population under climate change. Sustainable agriculture consists of environment-friendly farming methods that allow the production of crops with minimal harm to the ecosystem. Early establishment in rice might be helpful to adopt sustainable agriculture with less inputs, such as water and phosphorus fertilizer. Two QTLs conferring tolerance to abiotic stress and low nutrition condition, DTY4.1 and Pup1, respectively, are effective for good establishment in the early growth stage under low water and phosphorus fertilizer application. We developed 'Sechanmi' and 'MSI 1-DTY' harboring Pup1 and DTY4.1 into MS11, a japonica rice variety adaptable to tropical regions, using Marker-Assisted Backcrossing (MABC). MS 11-PD lines were developed to meet the demand for less water and P fertilizer application throughout the growth stage of rice. In the F5 generation, water-saving or rainfed cultivation was performed in different P (phosphorus) content. Irrigation was applied only when severe drought was observed one month after transplanting. There was no significant difference observed between the parents and MS11-PD lines in low P conditions. However, MS11-PD lines had more tillers in P-supplied conditions compared to that of the parents 40 and 50 days after transplanting. Under the same amount of P, MS11-PD lines might have higher phosphorus uptake capacity than the parents, increasing the number of tillers and showing better early establishment. The better vegetative growth stage is one of the factors that can potentially increase production by way of higher number of panicles. Through this breeding strategy, it is possible to attain sustainable agriculture by applying less P and water to address the need of a growing population.

  • PDF

Comparison of Methane Emissions by Rice Ecotype in Paddy Soil

  • Tae Hee Kim;Jisu Choi;Seo Young Oh;Seong Hwan Oh
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.145-145
    • /
    • 2022
  • South Korea greenhouse gas emissions have increased year by year, resulting in a total emission of 727.6 million tons of CO2 eq in 2018, a 2.5% increase compared to 2017. Among them, the agricultural sector emitted 21.2 million tons of CO2 eq., accounting for 2.9% of the total. Among the greenhouse gases emitted from the agricultural sector, a particularly problematic is methane gas emitted from rice paddies. Methane is one of the important greenhouse gases with a global warming potential (GWP) that is about 21 times higher than that of carbon dioxide due to its high infrared absorption capacity despite its relatively short remaining atmospheric period. Since the pattern of methane generation varies depending on the rice variety and ecological type, research related to this is necessary for accurate emission calculation and development of reduction technology. Accordingly, a study was conducted to find out the changes in greenhouse gas emission according to rice varieties and ecology types. As for the rice eco-type cultivar, early maturing cultivar (Haedamssal) and medium-late rice cultivar (Saeilmi) were used. Haedamssal was transplanted on May 25 and June 25, and Saeilmi was transplanted on June 10 and June 25. The amount of methane generated according to the growing day showed a tendency to increase as the planting period was earlier. The difference between varieties was that Haedamssal showed higher methane production than Saeilmi. The total CH4 flux in the saeilmi was 18.7 kg·h-1(Jun 10 transplanting), 12.4 kg·h-1(Jun 25 transplanting) during rice cultivation. Lower methane emission was observed in Saeilmi than in Haedam rice. In addition, the earlier the planting period, the higher the methane emission. This study is the result of the first year of research, and it is planned to investigate the amount of greenhouse gas emission between double cropping and single cropping using wheat cultivation after harvest for each ecological type.

  • PDF

Grain Yield and Seed Quality of Rice Plants as Affected by Water-saving Irrigation (절수관개방법이 벼 수량 및 품질에 미치는 영향)

  • Choi Weon-Young;Park Hong-Kyu;Moon Sang-Hoon;Choi Min-Gyu;Kim Sang-Su;Kim Chung-Kon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.141-144
    • /
    • 2006
  • This experiment investigated seed yield and grain quality of rice plants treated with different irrigation methods (water supply until complete saturation, field capacity, and surface soil crack) compared with a conventional irrigation method (inundation). Each treatment began 20 days after transplanting and ended 35 days after heading. There was an 8, 18 and 18% reduction in irrigation water in the three treatments, respectively. Rice yield with complete saturation treatment was similar to that of conventional irrigation, while those of field capacity and soil crack were less by 7 and 13%. The ratio of filled grain was lower and amylose content was higher in the water-saving irrigation than those from conventional irrigation.