• Title/Summary/Keyword: Transparent conductive layer

Search Result 126, Processing Time 0.034 seconds

Optical Simulation Study on Indoor Organic Photovoltaics with Textured Electrodes towards Self-powered Photodetector

  • Biswas, Swarup;Kim, Hyeok
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.236-239
    • /
    • 2019
  • In this work, we performed an optical simulation study on the performance of a PMDPP3T:PCBM based on an organic photovoltaic (PV) device. The virtual PV device was developed in Lumerical, finite-difference time-domain (FDTD) solutions. Different layers of the PV cell have been defined through the incorporation of complex refractive index value of those layers' constituent materials. During the simulation study, the effect of the variation active layer thickness on an ideal short circuit current density ($J_{sc,ideal}$) of the PV cell has been, first, observed. Thereafter, we have investigated the impact of surface roughness of a transparent conducting oxide (TCO) electrode on $J_{sc,ideal}$ of the PV cells. From this simulation, it has been observed that the $J_{sc,ideal}$ value of the PV cell is strongly dependent on the thickness of its active layer and the photon absorption of the PV cell has gradually decreased with the increment of the TCO's surface roughness. As a result, the capability of the PV device has been reduced with the increment of the surface roughness of the TCO.

Investigation on Contact Resistance of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors with Various Electrodes by Transmission Line Method

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.139-141
    • /
    • 2015
  • Contact resistance of interface between the channel layers and various S/D electrodes was investigated by transmission line method. Different electrodes such as Ti/Au, a-IZO, and multilayer of a-IGZO/Ag/a-IGZO were compared in terms of contact resistance, using the transmission line model. The a-IGZO TFTs with a-IGZO/Ag/a-IGZO of S/D electrodes showed good performance and low contact resistance due to the homo-junction with channel layer.

Effect of buffer layer on GZO/ITO multi-layered transparent conductive oxide films for solar cells (태양전지 투명전극용 GZO/ITO 박막의 물성에 대한 버퍼 층의 영향)

  • Jeong, A-Ro-Mi;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.182-182
    • /
    • 2011
  • 태양전지용 TCO로 사용되는 ITO 박막의 고온에서의 전기적 특성을 향상시키기 위하여 고온 안정성을 가지는 GZO/ITO 박막을 증착 하였다. GZO/ITO 박막의 특성은 버퍼 층인 ITO의 두께 및 구조에 의해 영향을 받는 것을 알 수 있었다.

  • PDF

Influence of (Ga,Al) : ZnO Window Layer Thickness on the Performance of CIGS Thin Film Solar Cells ((Ga,Al):ZnO 투명전극층의 두께에 따른 CIGS 박막 태양전지의 성능 변화 연구)

  • Cha, Jung-Hwa;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.28-32
    • /
    • 2017
  • In this paper, (Ga,Al):ZnO layers were deposited by sputtering to evaluate the device performance according to the thickness of the layer. As the thickness increased, low transmittance was observed, but the electrical resistance was improved. On the other hand, the highest efficiency was recorded at 400 nm device than a 500 nm of it. Therefore, since the critical thickness exists, it is necessary to set an adequate TCO layer thickness in consideration of the characteristics of the underlying film and the device.

Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition (저온 선택적 원자층 증착공정을 이용한 유기태양전지용 AZO 투명전극 제조에 관한 실험적 연구)

  • Kim, Ki-Cheol;Song, Gen-Soo;Kim, Hyung-Tae;Yoo, Kyung-Hoon;Kang, Jeong-Jin;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Kang, Heui-Seok;Cho, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.577-582
    • /
    • 2013
  • AZO (aluminum-doped zinc oxide) is one of the best candidate materials to replace ITO (indium tin oxide) for TCOs (transparent conductive oxides) used in flat panel displays, organic light-emitting diodes (OLEDs), and organic solar cells (OSCs). In the present study, to apply an AZO thin film to the transparent electrode of an organic solar cell, a low-temperature selective atomic layer deposition (ALD) process was adopted to deposit an AZO thin film on a flexible poly-ethylene-naphthalate (PEN) substrate. The reactive gases for the ALD process were di-ethyl-zinc (DEZ) and tri-methyl-aluminum (TMA) as precursors and H2O as an oxidant. The structural, electrical, and optical characteristics of the AZO thin film were evaluated. From the measured results of the electrical and optical characteristics of the AZO thin films deposited on the PEN substrates by ALD, it was shown that the AZO thin film appeared to be comparable to a commercially used ITO thin film, which confirmed the feasibility of AZO as a TCO for flexible organic solar cells in the near future.

Transparent Conducting Multilayer Electrode (GTO/Ag/GTO) Prepared by Radio-Frequency Sputtering for Organic Photovoltaic's Cells

  • Pandey, Rina;Kim, Jung Hyuk;Hwang, Do Kyung;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.219-223
    • /
    • 2015
  • Indium free consisting of three alternating layers GTO/Ag/GTO has been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting electrodes and the structural, electrical and optical properties of the gallium tin oxide (GTO) films were carefully studied. The gallium tin oxide thin films deposited at room temperature are found to have an amorphous structure. Hall Effect measurements show a strong influence on the conductivity type where it changed from n-type to p-type at $700^{\circ}C$. GTO/Ag/GTO multilayer structured electrode with a few nm of Ag layer embedded is fabricated and show the optical transmittance of 86.48% in the visible range (${\lambda}$ = 380~770 nm) and quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$. The resultant power conversion efficiency of 2.60% of the multilayer based OPV (GAG) is lower than that of the reference commercial ITO. GTO/Ag/GTO multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

A study on the fabrication of heatable glass using conductive metal thin film on Low-e glass (로이유리의 전도성 금속박막을 이용한 발열유리 제작에 관한 연구)

  • Oh, Chaegon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.105-112
    • /
    • 2018
  • This paper proposes a method for fabricating heatable glass using the conduction characteristics of metal thin films deposited on the surface of Low-e(Low emissivity) glass. The heating value of Low-e glass depends on the Joule heat caused by Low-e glass sheet resistance. Hence, its prediction and design are possible by measuring the sheet resistance of the material. In this study, silver electrodes were placed at 50 mm intervals on a soft Low-e glass sample with a low emissivity layer of 11 nm. This study measured the sheet resistance using a 4-point probe, predicted the power consumption and heating value of the Low-e glass, and confirmed the heating performance through fabrication and experience. There are two conventional methods for manufacturing heatable glass. One is a method of inserting nichrome heating wire into normal glass, and the other is a method of depositing a conductive transparent thin film on normal glass. The method of inserting nichrome heating wire is excellent in terms of the heating performance, but it damages the transparency of the glass. The method for depositing a conductive transparent thin film is good in terms of transparency, but its practicality is low because of its complicated process. This paper proposes a method for manufacturing heatable glass with the desired heating performance using Low-e glass, which is used mainly to improve the insulation performance of a building. That is by emitting a laser beam to the conductive metal film coated on the entire surface of the Low-e glass. The proposed method is superior in terms of transparency to the conventional method of inserting nichrome heating wire, and the manufacturing process is simpler than the method of depositing a conductive transparent thin film. In addition, the heat characteristics were compared according to the patterning of the surface thin film of the Low-e glass by an emitting laser and the laser output conditions suitable for Low-e glass.

Characterization of Ag Nanowire Transparent Electrode Fabricated on PVDF Film (PVDF 필름 위에 제작된 고전도도 Ag 나노와이어 투명전극 특성 연구)

  • Ra, Yong-Ho;Park, Hyelim;An, Soyeon;Kim, Jin-Ho;Jeon, Dae-Woo;Kim, SunWoog;Lee, Mijai;Hwang, Jonghee;Lim, Tae Young;Lee, YoungJin
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.366-370
    • /
    • 2019
  • In this study, we have successfully fabricated a highly conductive transparent electrode using Ag nanowires, based on piezoelectric polyvinylidene difluoride (PVDF) film, that can be applied as transparent and flexible speakers. The structural morphology of the Ag nanowires was confirmed by a detailed scanning electron microscopy. Ultraviolet-visible spectroscopy demonstrated that the transparent electrode fabricated by the Ag nanowires exhibited a transmittance of above 70%. The transparent electrode also showed very low sheet resistance with high flexibility. We have further developed an anti-oxidation coating layer by using a tetraethyl orthosilicate-poly trimethyloxyphenylsilane (TEOS-PTMS) slurry technique. It was confirmed that the transmittance and sheet resistance of the antioxidant film depends critically on the humidity of the film surface. We believe such Ag nanowire electrodes are a very promising next-generation transparent electrode technology that can be used in future flexible and transparent devices.

Ag Nanowires와 혼합물을 이용한 ITO-free 유기태양전지 연구

  • Jang, So-Ra;Yang, Hye-Jin;Go, Geum-Jin;Choe, Cheol-Ho;Choe, Ju-Hwan;Sin, Jin-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.467.2-467.2
    • /
    • 2014
  • 유기태양전지는 친환경 에너지 소스로써 저가 대량 생산이 가능하고 특히 유연한 기판에 적용이 가능하여 많은 관심을 받고 있다. 그럼에도 불구하고 기존에 사용되는 indium tin oxide (ITO)의 사용으로 인한 유연성 부족으로 대체되는 투명전극의 개발이 요구되어지고 있다. 이로 인해 carbon nanotubes, graphene, thin metals, metal grids, and conducting polymers 등이 연구되고 있으며, 이중 Silver nanowires (Ag NWs)를 이용한 방식도 많은 관심과 함께 전기광학적 특성에 대한 연구가 진행되고 있다. 하지만 유기전자소자에 사용되기에는 몇 가지 문제점이 발생하는데 이를 해결하기 위한 노력이 다양하게 이루어지고 있다. 특히 다양한 물질의 혼합을 통해 개선하고자 하는 노력이 증가하고 있는데 적층구조의 전도성필름 형성을 통해 ITO-free OPVs에서 Ag nanowire를 transparent conductive electrodes로 활용하였다. Ag NWs층과 PEDOT:PSS layer의 복합화를 통해 저가의 ITO-free OPVs용 transparent anodes가 가능해졌다.

  • PDF

반도성 층의 2단계 소결에 의한 염료감응형 태양전지의 특성

  • Bong, Seong-Jae;Ma, Jae-Pyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.436-437
    • /
    • 2012
  • 염료감응형 태양전지의 성능을 향상시키기 위해서는 염료에서 여기된 전자가 TiO2 계면을 따라 TCO (Transparent Conductive Oxide)로 이동하지 않고 산화된 염료나 전해질과 재결합하는 것을 차단하는 것, 그리고 염료에 TCO의 전기적 접촉을 차단하는 것 등이 필요하다. 이를 위해 본 연구에서는 TiO2 박막층 위에 차단층 TiO2를 $450^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$에서 각각 소결한 뒤Blocking layer로서의 온도에 따른 상(phase) 변화를 통해 염료감응형 태양전지의 효율 향상에 대해 실험하였다. 기존 염료 감응형 태양전지에 대한 보고에 의하면 $600^{\circ}C$ 이상에서의 상은rutile 상임을 확인할 수 있다. 실험결과 Blocking layer로서의 TiO2를 $750^{\circ}C$에서 $750^{\circ}C$에서 sintering 했을 때, 가장 좋은 전기적 특성을 나타내었다.

  • PDF