• Title/Summary/Keyword: Transparent conducting oxide films

Search Result 235, Processing Time 0.023 seconds

Characterization of conducting aluminium doped zinc oxide (ZnO:Al) thin films deposited on polymer substrates (폴리머 기판위에 증착된 ZnO:Al 전도막의 특성연구)

  • Koo, Hong-Mo;Kim, Se-Hyun;Park, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.535-538
    • /
    • 2004
  • Zinc Oxide (ZnO) films have attracted considerable attention for transparent conducting films, because of their high conductivity, good optical transmittance from UV to near IR as well as a low-cost fabrication. To increase the conductivity of ZnO, doping of group III elements (Al, Ga, In and B) has been carried out. Transparent conducting films have been applied for optoelectric devices, the development of the transparent conducting thin films on flexible light-weight substrates are required. In this research, the transparent conducting ZnO thin films doped with Aluminum (Al) on polymer substrates were deposited by the RF magnetron suputtering method, and the structural, optical and electrical properties were investigated.

  • PDF

Preparation of Transparent and Conducting Tin Oxide Films by the Ultrasonic Spray Pyrolysis (초음파분무열분해에 의한 투명전도성 산화주석막의 제조)

  • Kim, Sang-Kil;Yoon, Cheonho
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.214-219
    • /
    • 1998
  • The transparent conducting tin oxide films were deposited on g1ass substrates by the ultrasonic spray pyrolysis. Examined were effects of deposition parameters on the electrical resistance, optical transmittance, crystal structure, and thickness of tin oxide films. As both the deposition time and concentration of tin(IV) chloride increase, the deposited tin oxide films exhibited the decrease of electrical resistance and optical transmittance in the visible and near infrared region. With increasing heat-treatment temperature in air, the deposited tin oxide films showed the enhanced electrical resistance and optical transmittance. This study suggests that the ultrasonic spray pyrolysis may be a promising deposition technique effectively to prepare transparent conducting films of good quality in a single step.

  • PDF

Effects of Annealing Temperature on Properties of Al-Doped ZnO Thin Films prepared by Sol-Gel Dip-Coating

  • Jun, Min-Chul;Koh, Jung-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.163-167
    • /
    • 2013
  • Aluminum doped zinc oxide (AZO) thin films have been prepared on the glass substrates (Corning 1737) by sol-gel dip-coating method employing zinc acetate and aluminum chloride hexahydrate for the transparent conducting oxide (TCO) applications. 1 at% Al was doped to the ZnO thin films. The effects of post-heating temperature on the crystallization, optical and electrical properties of the AZO films have been investigated. Experimental results showed that post-heating temperature affected the microstructure, electrical resistance, and optical transmittance of the AZO films. From the X-ray diffraction analysis, all films have hexagonal wurtzite crystal structure. Optical transmittance spectra of the AZO films exhibited transmittance higher than about 80% within the visible wavelength region and the optical direct band gap ($E_g$) of these films was increased with increasing post-heating temperature. A minimum resistivity of $2.5{\times}10^{-3}{\Omega}cm$ was observed at $650^{\circ}C$.

Current Status of Low-temperature TCO Electrode for Solar-cell Application: A Short Review (고효율 태양전지 적용을 위한 저온 투명전극 소재 연구현황 리뷰)

  • Park, Hyeongsik;Kim, Youngkuk;Oh, Donghyun;Pham, Duy Phong;Song, Jaechun;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Transparent conducting oxide (TCO) films have been widely used in optoelectronic devices, such as OLEDs, TFTs, and solar cells. However, thin films of indium tin oxide (ITO) have few disadvantages pertaining to process parameters such as substrate temperature and sputtering power. In this study, we investigated the requirements for using TCO films in silicon-based solar cells and the best alternative TCO materials to improve their efficiency. Moreover, we discussed the current status of high-efficiency solar cells using low-temperature TCO films such as indium zinc oxide and Zr-doped indium oxide.

Effects of oxygen partial pressure on electrical properties of transparent semiconducting indium zinc tin oxide thin films (IZTO 투명 반도체 박막의 전기적 특성에 대한 산소분압의 영향)

  • Lee, Keun-Young;Shin, Han-Jae;Han, Dong-Cheul;Kim, Sang-Woo;Lee, Do-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.93-94
    • /
    • 2009
  • The influences of $O_2$ partial pressure on electrical properties of transparent semiconducting indium zinc tin oxide thin films deposited at room temperature by magnetron sputtering have been investigated. The experimental results show that by varying the $O_2$ partial pressure during deposition, electron mobilities of IZTO thin film can be controlled between 7 and $25\;cm^2/Vs$. For conducting films, the carrier concentration and resistivity are ${\sim}\;10^{21}\;cm^{-3}$ and ${\sim}\;10^{-4}\;{\Omega}\;cm$, respectively. Concerning semiconducting films, under 12% $O_2$ partial fraction, the electron concentration is $10^{18}\;cm^{-3}$, showing the promising candidate for the application of transparent thin film transistors.

  • PDF

Effect of process parameters of antimony doped tin oxide films prepared on flexible substrate at room temperature

  • Lee, Seong-Uk;Hong, Byeong-Yu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.175-175
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used as transparent conducting thin film material for application in various fields such as solar cells, optoelectronic devices, heat mirrors and gas sensors, etc. Recently the increased utilization of many transparent electrodes has accelerated the development of inexpensive TCO materials. Indium tin oxide (ITO) film is well-known for TCO materials because of its low resistivity, but there is disadvantage that it is too expensive. ZnO film is cheaper than ITO but it shows thermally poor stability. On the contrary, antimony-doped tin oxide films (ATO) are more stable than TCO films such as Al-doped zinc oxide (AZO) and ITO. Moreover, SnO2 film shows the best thermal and chemical stability, low cost and mechanical durability except the poor conductivity. However, annealing is proved to improve the conductivity of ATO film. Therefore, in this work, antimony (6 wt%) doped tin oxide films to improve the conductivity were deposited on 7059 corning glass by RF magnetron sputtering method for the application to transparent electrodes. In general, of all TCO films, glass is the most commonly selected substrate. However, for future development in flexible devices, glass is limited by its intrinsic inflexibility. In this study, we report the growth and properties of antimony doped tin oxide (ATO) films deposited on PES flexible substrate by using RF magnetron sputtering. The optimization process was performed varying the sputtering parameters, such as RF power and working pressure, and parameter effect on the structural, electrical and optical properties of the ATO films were investigated.

  • PDF

Some properties on Conversion Efficiency of Flexible Film-Typed DSCs with ZnO:AI / ITO TCO layers (ZnO:Al 과 ITO 투명전도막을 이용한 플랙시블 타입 DSCs변환효율 특성)

  • Kim, Ji-Hoon;Kwak, Dong-Joo;Sung, Youl-Moon;Kim, Tae-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.177-179
    • /
    • 2009
  • In order to investigate the possible application of ZnO films as a transparent conducting oxide (TCO) electrode, ZnO:Al films were prepared by RF magnetron sputtering method. The effects of surface treatment and doping concentration on the structural and electrical properties of ZnO films were mainly studied experimentally. Five-inch PDP cells using either a ZnO:Al or indium tin oxide (ITO) electrode were also fabricated separately under the same manufacturing conditions. The luminous properties of both the transparent conducting oxide electrode were measured and compared with each other. By doping the ZnO target with 2 wt% of Al2O3, the film deposited at a chemical surface treatment resulted in the minimum resistivity of 8.5 _ 10_4 U-cm and a transmittance of 91.7%. And DBD surface treatment resulted in the minimum resistivity of 8.5 _ 10_4 U-cm and a transmittance of 91.7%. Although the luminance and luminous efficiency of the transparent conducting oxide electrode using ZnO:AI are lower than those of the cell with the ITO electrode by about 10%, these values are sufficient enough to be considered for the normal operation of TCO.

  • PDF

Effect of Substrate Temperature on the Properties of ZnO Transparent conducting Thin Film Prepared by the Vapour Spraying Method (분사증기법에 의해 형성된 ZnO 투명전도막에서 기판온도가 막 특성에 미치는 영향)

  • 이환수;주승기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.4
    • /
    • pp.436-447
    • /
    • 1994
  • ZnO transparent conducting thin film, which is a strong candidate for a transparent electrical contact in optoelectronic devices, was prepared by the vapour spraying method on the slide glass in nitrogen ambient at the atmospheric pressure. The structural, optical and electrical properties of films show a strong dependence on substrate temperature, and the optimum range of deposition temperature existed to obtain TCO(Transparent Conducting Oxide) films. At the higher temperatures, milky films were obtained. In such optimum range, the bandgap in ZnO films was determined from the spectral dependence of absorption coefficient and electrical characteristics were characterized with by the Hall mobility and carrier concentration.

  • PDF

Effects of Deposition Thickness and Oxygen Introduction Flow Rate on Electrical and Optical Properties of IZO Films (증착두께 및 산소도입속도가 IZO 필름의 전기 및 광학적 특성에 미치는 영향)

  • Park, Sung-Hwan;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.224-229
    • /
    • 2010
  • Transparent conductive oxide films have been widely used in the field of flat panel display (FPD). Transparent conductive Indium Zinc Oxide (IZO) thin films with excellent chemical stability have attracted much attention as an alternative material for Indium Tin Oxide (ITO) films. In this study, using $In_2O_3$ and ZnO powder mixture with a ratio of 90 : 10 wt% as a target, IZO films are prepared on polynorbornene (PNB) substrates by electron beam evaporation. The effect of thickness and $O_2$ introduction flow rate on the optical, electrical, structural properties and surface composition of deposited IZO films were investigated by UV/Visible spectrophotometer, 4-point probe method, SEM, XRD and XPS.

Transparent Conducting Multilayer Electrode (GTO/Ag/GTO) Prepared by Radio-Frequency Sputtering for Organic Photovoltaic's Cells

  • Pandey, Rina;Kim, Jung Hyuk;Hwang, Do Kyung;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.219-223
    • /
    • 2015
  • Indium free consisting of three alternating layers GTO/Ag/GTO has been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting electrodes and the structural, electrical and optical properties of the gallium tin oxide (GTO) films were carefully studied. The gallium tin oxide thin films deposited at room temperature are found to have an amorphous structure. Hall Effect measurements show a strong influence on the conductivity type where it changed from n-type to p-type at $700^{\circ}C$. GTO/Ag/GTO multilayer structured electrode with a few nm of Ag layer embedded is fabricated and show the optical transmittance of 86.48% in the visible range (${\lambda}$ = 380~770 nm) and quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$. The resultant power conversion efficiency of 2.60% of the multilayer based OPV (GAG) is lower than that of the reference commercial ITO. GTO/Ag/GTO multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.