• Title/Summary/Keyword: Transparent Layer

Search Result 683, Processing Time 0.026 seconds

ITO/ZnO/Ag/ZnO/ITO Multilayers Films for the Application of a Very Low Resistance Transparent Electrode on Polymer Substrate

  • Ok, Chul-Ho;Han, Jin-Woo;Kim, Jong-Yeon;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.397-397
    • /
    • 2007
  • Multilayer transparent electrodes, having a much lower electrical resistance than the widely used transparent conducting oxide electrodes, were prepared by using radio frequency magnetron sputtering. The multilayer structure consisted of five layers, indium tin oxided(ITO)/zinc oxide(ZnO)/Ag/oxide(ZnO)/ITO. With about 50nm thick ITO films, the multilayer showed a high optical transmittance in the visible range of the spectrum and had color neutrality. The electrical and optical properties of ITO/ZnO/Ag/ZnO/ITO multilayer were changed mainly by Ag film properties, which were affected by the deposition process of the upper layer. Especially ZnO layer was improved to adhesion of Ag and ITO. A high quality transparent electrode, having a resistance as low as and a high optical transmittance of 91% at 550nm, was obtained. It could satisfy the requirement for the flexible OLED and LCD.

  • PDF

Enhancement of Light Extraction from Transparent OLED Lighting Panels (투명 OLED 면광원 광 추출 향상 기술)

  • Park, June Buem;Shin, Dong-Kyun;Han, Seun Gjo;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.41-45
    • /
    • 2017
  • We have investigated the light extraction efficiency of large-area OLED lighting panels with a microlens array (MLA) or external scattering layer (ESL) by ray tracing simulation. The application of MLA and ESL to transparent OLEDs (TOLEDs) with an auxiliary metal electrode is also studied. It is found that MLA shows higher light extraction efficiency, compared with ESL. However, we have demonstrated that ESL is more suitable for TOLEDs having dual-sided equal light emission. Namely, equal light emission from the front and rear surfaces of TOLED can be achieved by increasing the scattering particle density of ESL. To compensate for a loss in light emission induced by auxiliary metal electrode, we come out with an OLED structure partially covered with MLA at the outer surface of glass substrate, which is aligned with metal electrode. With this scheme, it is observed that the light extraction efficiency can be boosted more than 20% from opaque OLED and 50% from transparent OLED.

  • PDF

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • Lee, Eun-U;Park, Sun-Yong;Lee, Sang-Hwan;Kim, U-Nam;Jeong, U-Jin;Jeon, Chan-Uk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

Functional Designs of Metal oxide for Transparent Electronics

  • Kim, Joondong;Patel, Malkeshkumar;Kim, Hong-Sik;Kim, Hyunki;Yadav, Pankaj;Park, Wanghee;Ban, Dongkyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.387.1-387.1
    • /
    • 2016
  • Transparent materials are necessary for most photoelectric devices, which allow the light generation from electric energy or vice versa. Metal oxides are usual materials for transparent conductors to have high optical transmittance with good electrical properties. Functional designs may apply in various applications, including solar cells, photodetectors, and transparent heaters. Nanoscale structures are effective to drive the incident light into light-absorbing semiconductor layer to improve solar cell performances. Recently, the new metal oxide materials have inaugurated functional device applications. Nickel oxide (NiO) is the strong p-type metal oxide and has been applied for all transparent metal oxide photodetector by combining with n-type ZnO. The abrupt p-NiO/n-ZnO heterojunction device has a high transmittance of 90% for visible light but absorbs almost entire UV wavelength light to show the record fastest photoresponse time of 24 ms. For other applications, NiO has been applied for solar cells and transparent heaters to induce the enhanced performances due to its optical and electrical benefits. We discuss the high possibility of metal oxides for current and future transparent electronic applications.

  • PDF

Optically transparent and electrically conductive indium-tin-oxide nanowires for transparent photodetectors

  • Kim, Hyunki;Park, Wanghee;Ban, Dongkyun;Kim, Hong-Sik;Patel, Malkeshkumar;Yadav, Pankaj;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.390.2-390.2
    • /
    • 2016
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was coated before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. Highly optical transparent photoelectric devices were realized by using a transparent metal-oxide semiconductor heterojunction by combining of p-type NiO and n-type ZnO. A functional template of ITO nanowires was applied to this transparent heterojunction device to enlarge the light-reactive surface. The ITO NWs/n-ZnO/p-NiO heterojunction device provided a significant high rectification ratio of 275 with a considerably low reverse saturation current of 0.2 nA. The optical transparency was about 80% for visible wavelengths, however showed an excellent blocking UV light. The nanostructured transparent heterojunction devices were applied for UV photodetectors to show ultra fast photoresponses with a rise time of 8.3 mS and a fall time of 20 ms, respectively. We suggest this transparent and super-performing UV responser can practically applied in transparent electronics and smart window applications.

  • PDF

Research on Glass Dielectric Capacitive Coupling Wireless Power Transfer Using Transparent Electrode (투명 전극을 적용한 유리 유전체 커패시티브 커플링 무선 전력 전송에 관한 연구)

  • Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.286-289
    • /
    • 2018
  • This paper tests the feasibility of using the transparent electrode as the electrode of the capacitor in order to use the vehicle glass of the electric vehicle for a capacitive coupling wireless transfer (CCWPT). Large coupling capacitance can be obtained due to large area and high permittivity using the glasses of an electric vehicle. However, if an electrode is formed on a metal such as copper, then a view cannot be guaranteed and a transparent electrode can pose a solution. Therefore, the coupling capacitor is implemented by forming a glass dielectric with an ITO transparent electrode on one side through a semiconductor deposition process. The loss of the coupling capacitor is investigated, and a 200 W CCWPT prototype is fabricated and tested for its characteristics and power transfer.

Study on the Energy Saving for School Buildings - through thermal effect of the transparent insulated opaque envelopes - (학교건물의 에너지 절약에 관한 연구 - 투명 단열외피의 열적성능을 중심으로 -)

  • Lee, S.;Kim, S.H.;Kim, K.C.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2006
  • The thermal effect of a transparent insulated opake wall with solar energy was investigated theoretically. The heat gain through transparent insulated opake wall was studied for relative simple conditions. The stationary heat transport effect was studied for layer which is built on the opake wall. This study shows that a relative low solar radiation intensity causes a great heat reduction through the transparent insulated opake wall.

  • PDF

High Transparent Planar Dipole Antenna using Ionized Salt-water of ASA Structure (이온화된 소금물을 이용한 ASA 구조의 고 투명 평면형 다이폴 안테나)

  • Phan, Duy Tung;Jung, Chang Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.492-498
    • /
    • 2021
  • This feasibility study evaluated an optically transparent planar antenna using liquid salt-water as the conducting material. The most significant reason behind using liquid salt-water for transparent antenna applications is its excellent average optical transparency (OTav) (> 95% at a salinity of 40 ppt) compared to other typical solid transparent thin-film electrodes, such as indium tin oxide (ITO:> 73%) or multi-layer films (MLF: > 78%). Each conductive arm of the proposed dipole is constructed from a salt-water layer held between two clear planar acrylic layers (��r = 2.61, tan�� = 0.01, OTav > 90%) (acrylic/salt-water/acrylic; ASA) due to surface tension. To examine the electrical and optical properties of the ASA structure, the surface tension was measured to determine the thickness of the salt-water layer that finalized its sheet resistance and OTav. The average gain and efficiency of the antenna were 1.72 dBi and 74%, respectively, in the operating UHF (Ultra high frequency) band (470-771 MHz). Therefore, the proposed antenna can be a good candidate for applications as a transparent planar antenna using salt-water.

Highly stable Zn-In-Sn-O TFTs for the Application of AM-OLED Display

  • Ryu, Min-Ki;KoPark, Sang-Hee;Yang, Shin-Hyuk;Cheong, Woo-Seok;Byun, Chun-Won;Chung, Sung-Mook;Kwon, Oh-Sang;Park, Eun-Suk;Jeong, Jae-Kyeong;Cho, Kyoung-Ik;Cho, Doo-Hee;Lee, Jeong-Ik;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.330-332
    • /
    • 2009
  • Highly stable bottom gate thin film transistors(TFTs) with a zinc indium tin oxide(Zn-In-Sn-O:ZITO) channel layer have been fabricated by rf-magnetron co-sputtering using a indium tin oxide(ITO:90/10), a tin oxide and a zinc oxide targets. The ZITO TFT (W/L=$40{\mu}m/20{\mu}m$) has a mobility of 24.6 $cm^2$/V.s, a subthreshold swing of 0.12V/dec., a turn-on voltage of -0.4V and an on/off ratio of >$10^9$. When gate field of $1.8{\times}10^5$ V/cm was applied with source-drain current of $3{\mu}A$ at $60^{\circ}C$, the threshold voltage shift was ~0.18 V after 135 hours. We fabricated AM-OLED driven by highly stable bottom gate Zn-In-Sn-O TFT array.

  • PDF

Fabrication of Transparent Conductive Oxide-less Dye-Sensitized Solar Cells Consisting of Titanium Double Layer Electrodes (이중층 티타늄 전극으로 구성된 TCO-less 염료감응형 태양전지 제작에 관한 연구)

  • Shim, Choung-Hwan;Kim, Yun-Gi;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.114-118
    • /
    • 2011
  • Dye-Sensitized Solar Cells(DSSCs) consist of a titanium dioxide($TiO_2$) nano film of the photo electrode, dye molecules on the surface of the $TiO_2$ film, an electrolyte layer and a counter electrode. But two transparent conductive oxide(TCO) substrates are estimated to be about 60[%] of the total cost of the DSSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, we suggested a TCO-less DSSCs which has titanium double layer electrodes. Titanium double layer electrodes are formed by electron-beam evaporation method. Analytical instruments such as electrochemical impedance spectroscopy, scanning electron microscope were used to evaluate the TCO-less DSSCs. As a result, the proposed structure decreases energy conversion efficiency and short-circuit current density compared with the conventional DSSCs structure with FTO glass, while internal series impedance of TCO-less DSSCs using titanium double layer electrodes decreases by 27[%]. Consequently, the fill factor is improved by 28[%] more than that of the conventional structure.