• Title/Summary/Keyword: Transparent Layer

Search Result 683, Processing Time 0.028 seconds

Patterning Barrier Ribs of PDP by Transparent Soft Mold

  • Paek, Sin-Hye;Choi, Hyung-Suk;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.639-642
    • /
    • 2002
  • A new PDP barrier rib formation technique was investigated utilizing transparent soft maid made of silicon resin. Transparent soft mold was fabricated by pouring a silicone resin into the base mold made with photosensitive glass. The photosensitive barrier rib paste was coated on the glass substrate and dried in a 90 $^{\circ}C$ convection oven for 20min. The transparent soft mold was pressed on top of the semi-dry barrier rib layer and then irradiated with a UV lamp to a total dose of $900{\sim}1000mJ/cm^2$ The soft maid was then removed from the pressed barrier rib by winding up and fine pattern of barrier rib was obtained. The photosensitive barrier rib paste makes the demolding easy due to reduced interfacial forces and shrinking of paste materials.

  • PDF

Transparent ZnS:Cu, Mn Powder Electroluminescent Device Using AgNW Electrode (은 나노 와이어 전극을 이용한 ZnS:Cu, Mn 전계발광소자)

  • Jung, Hyunjee;Kim, Jongsu;Kim, Gwangchul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.73-76
    • /
    • 2021
  • This thesis described the optical and electrical properties of the alternating current powder electroluminescent device based on Ag nanowire as a transparent electrode. The Ag nanowire electrode showed the morphology of 20 nm in diameter and 15 ㎛ in length. The transparent electroluminescent devices that were fabricated using the nanomilled ZnS : Cu, Mn phosphor by bar-coating process showed the transmittance of 67%. In order to improve the luminous efficiency, it is necessary to apply the transparent dielectric layer and increase the amount of the nanophosphor while maintaining the transmittance.

Highly Flexible Touch Screen Panel Fabricated with Silver Nanowire Crossing Electrodes and Transparent Bridges

  • Jeon, Youngeun;Jin, Han Byul;Jung, Sungchul;Go, Heungseok;Lee, Innam;Lee, Choonhyop;Joo, Young Kuil;Park, Kibog
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.508-513
    • /
    • 2015
  • A capacitive-type touch screen panel (TSP) composed of silver nanowire (AgNW) crossing electrodes and transparent bridge structures was fabricated on a polycarbonate film. The transparent bridge structure was formed with a stack of Al-doped ZnO (AZO) electrodes and SU-8 insulator. The stable and robust continuity of the bridge electrode over the bridge insulator was achieved by making the side-wall slope of the bridge insulator low and depositing the conformal AZO film with atomic layer deposition. With an extended exposure time of photolithography, the lower part of the SU-8 layer around the region uncovered by the photomask can be exposed enough to the UV light scattered from the substrate. This leads to the low side-wall slope of the bridge insulator. The fabricated TSP sample showed a large capacitance change of 22.71% between with and without touching. Our work supplies the technological clue for ensuring long-term reliability to the highly flexible and transparent TSP made by using conventional fabrication processes.

Anti-Fogging, Photocatalytic and Self-Cleaning Properties of TiO2-Transparent Coating

  • Mavengere, Shielah;Kim, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • Transparent, photocatalytic, and self-cleaning TiO2 thin film is developed by TiO2 sol-gel coating on glass and polycarbonate (PC) substrates. Acetyl acetone (AcAc) suppresses the precipitation of TiO2 by forming a yellowish (complex) transparent sol-gel. XPS analysis confirms the presence of Ti2p and O1s in the thin films on glass and PC substrates. The TiO2-sol is prepared by stabilizing titanium (IV) isopropoxide (TTIP) with diethylamine and methyl alcohol. The addition of AcAcsilane coupling solution to the TiO2-sol instantaneously turns to yellowish color owing to the complexing of titanium with AcAc. The AcAc solution substantially improves the photocatalytic property of the TiO2 coating layer in MB solutions. The coated TiO2 film exhibits super hydrophilicity without and with light irradiation. The TiO2 thin film stabilized by adding 8.7 wt% AcAc shows the highest photo-degradation for methylene blue (MB) solution under UV light irradiation. Also, the optimum photocatalytic activity is obtained for the 8.7 wt% AcAc-stabilized TiO2 coating layer calcined at 450 ℃. The thin-films on glass exhibit fast self-cleaning from oleic acid contamination within 45 min of UV-light irradiation. The appropriate curing time at 140 ℃ improves the anti-fogging and thermal stability of the TiO2 film coated on PC substrate. The watermark-free PC substrate is particularly beneficial to combat fogging problems of transparent substrates.

Changes in Interface Properties of TCO/a-Si:H Layer by Zn Buffer Layer in Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지의 Zn 확산방지층에 의한 TCO/a-Si:H 층간의 계면특성 변화)

  • Tark, Sung-Ju;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.341-346
    • /
    • 2011
  • In this study, we inserted a Zn buffer layer into a AZO/p-type a-si:H layer interface in order to lower the contact resistance of the interface. For the Zn layer, the deposition was conducted at 5 nm, 7 nm and 10 nm using the rf-magnetron sputtering method. The results were compared to that of the AZO film to discuss the possibility of the Zn layer being used as a transparent conductive oxide thin film for application in the silicon heterojunction solar cell. We used the rf-magnetron sputtering method to fabricate Al 2 wt.% of Al-doped ZnO (AZO) film as a transparent conductive oxide (TCO). We analyzed the electro-optical properties of the ZnO as well as the interface properties of the AZO/p-type a-Si:H layer. After inserting a buffer layer into the AZO/p-type a-Si:H layers to enhance the interface properties, we measured the contact resistance of the layers using a CTLM (circular transmission line model) pattern, the depth profile of the layers using AES (auger electron spectroscopy), and the changes in the properties of the AZO thin film through heat treatment. We investigated the effects of the interface properties of the AZO/p-type a-Si:H layer on the characteristics of silicon heterojunction solar cells and the way to improve the interface properties. When depositing AZO thin film on a-Si layer, oxygen atoms are diffused from the AZO thin film towards the a-Si layer. Thus, the characteristics of the solar cells deteriorate due to the created oxide film. While a diffusion of Zn occurs toward the a-Si in the case of AZO used as TCO, the diffusion of In occurs toward a-Si in the case of ITO used as TCO.

Reaction of α-Fe2O3 Red Pigment and Transparent Dielectric Materials (적색안료인 α-Fe2O3와 투명 유전체의 반응)

  • Kim, Bong-Chul;Han, Yong-Soo;Song, Yoon-Ho;Suh, Kyung-Soo;Lee, Jin-Ho;Lee, Nam-Yang;Park, Lee-Soon;Lee, Byung-Kyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.226-232
    • /
    • 2002
  • We searched thermal stability of ${\alpha}-Fe_2O_3$ using red color filter for display. In the PDP(Plasma Display Panel), the color filter layer is lied normally between front glass and transparent dielectric materials, so it might be needed to study the reaction of ${\alpha}-Fe_2O_3$ and transparent dielectric materials. The transparent dielectric materials containing ZnO has good transparency. Red colorlayer of ${\alpha}-Fe_2O_3$ contacted with dielectric material layer containing ZnO is changed to colorlessness over 500$^{\circ}$C because ZnO defuse ${\alpha}-Fe_2O_3$, the dielectric materials without ZnO, however, maintain red color at the same condition. We suggest that a layer contacting with ${\alpha}-Fe_2O_3$ red color layer has to lie with transparent dielectric materials without ZnO, then the materials containing ZnO is coated over to get color of ${\alpha}-Fe_2O_3$ for red color filter

Electrical and Optical Properties of Solution-Based Sb-Doped SnO2 Transparent Conductive Oxides Using Low-Temperature Process (저온 공정을 이용한 용액 기반 Sb-doped SnO2 투명 전도막의 전기적 및 광학적 특성)

  • Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.145-151
    • /
    • 2014
  • Solution-based Sb-doped $SnO_2$ (ATO) transparent conductive oxides using a low-temperature process were fabricated by an electrospray technique followed by spin coating. We demonstrated their structural, chemical, morphological, electrical, and optical properties by means of X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, atomic force microscopy, Hall effect measurement system, and UV-Vis spectrophotometry. In order to investigate optimum electrical and optical properties at low-temperature annealing, we systemically coated two layer, four layer, and six layers of ATO sol-solution using spin-coating on the electrosprayed ATO thin films. The resistivity and optical transmittance of the ATO thin films decreased as the thickness of ATO sol-layer increased. Then, the ATO thin films with two sol-layers exhibited superb figure of merit compared to the other samples. The performance improvement in a low temperature process ($300^{\circ}C$) can be explained by the effect of enhanced carrier concentration due to the improved densification of the ATO thin films causing the optimum sol-layer coating. Therefore, the solution-based ATO thin films prepared at $300^{\circ}C$C exhibited the superb electrical (${\sim}7.25{\times}10^{-3}{\Omega}{\cdot}cm$) and optical transmittance (~83.1 %) performances.

Characterization of Ag Nanowire Transparent Electrode Fabricated on PVDF Film (PVDF 필름 위에 제작된 고전도도 Ag 나노와이어 투명전극 특성 연구)

  • Ra, Yong-Ho;Park, Hyelim;An, Soyeon;Kim, Jin-Ho;Jeon, Dae-Woo;Kim, SunWoog;Lee, Mijai;Hwang, Jonghee;Lim, Tae Young;Lee, YoungJin
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.366-370
    • /
    • 2019
  • In this study, we have successfully fabricated a highly conductive transparent electrode using Ag nanowires, based on piezoelectric polyvinylidene difluoride (PVDF) film, that can be applied as transparent and flexible speakers. The structural morphology of the Ag nanowires was confirmed by a detailed scanning electron microscopy. Ultraviolet-visible spectroscopy demonstrated that the transparent electrode fabricated by the Ag nanowires exhibited a transmittance of above 70%. The transparent electrode also showed very low sheet resistance with high flexibility. We have further developed an anti-oxidation coating layer by using a tetraethyl orthosilicate-poly trimethyloxyphenylsilane (TEOS-PTMS) slurry technique. It was confirmed that the transmittance and sheet resistance of the antioxidant film depends critically on the humidity of the film surface. We believe such Ag nanowire electrodes are a very promising next-generation transparent electrode technology that can be used in future flexible and transparent devices.

Properties of IZTO Thin Films Deposited on PET Substrates with The SiO2 Buffer Layer

  • Park, Jong-Chan;Kang, Seong-Jun;Chang, Dong-Hoon;Yoon, Yung-Sup
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.72-76
    • /
    • 2015
  • 150-nm-thick In-Zn-Tin-Oxide (IZTO) films were deposited by RF magnetron sputtering after a 10 to 50-nm-thick $SiO_2$ buffer layer was deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) substrates. The electrical, structural, and optical properties of the IZTO/$SiO_2$/PET films were analyzed with respect to the thickness of the $SiO_2$ buffer layer. The mechanical properties were outstanding at a $SiO_2$ thickness of 50 nm, with a resistivity of $1.45{\times}10^{-3}{\Omega}-cm$, carrier concentration of $8.84{\times}10^{20}/cm^3$, hall mobility of $4.88cm^2/Vs$, and average IZTO surface roughness of 12.64 nm. Also, the transmittances were higher than 80%, and the structure of the IZTO films were amorphous, regardless of the $SiO_2$ thickness. These results indicate that these films are suitable for use as a transparent conductive oxide for transparency display devices.

Structural, Optical, and Electrical Properties of In2O3 Thin Films Deposited on Various Buffer Layers (다양한 버퍼층 위에 증착한 In2O3 박막의 구조, 광학 및 전기적 특성)

  • Kim, Moon-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.491-495
    • /
    • 2012
  • The effects of various buffer layers on the $In_2O_3$ transparent conducting films grown on glass substrates by radio-frequency reactive magnetron sputtering were investigated. The $In_2O_3$ thin films were deposited at $400^{\circ}C$ of growth temperature and 100% of oxygen flow rate. The optical, electrical, and structural and morphological properties of the $In_2O_3$ thin films subjected to buffer layers were examined by using ultraviolet-visible spectrophotometer, Hall-effect measurements, and X-ray diffractometer, respectively. The properties of $In_2O_3$ thin films showed different results, depending on the type of buffer layer. As for the $In_2O_3$ thin film deposited on ZnO buffer layer, the average transmittance was 89% and the electrical resistivity was $7.4{\times}10^{-3}\;{\Omega}cm$. The experimental results provide a way for growing the transparent conducting film with the optimum condition by using an appropriate buffer layer.