• 제목/요약/키워드: Transparent Conductive oxide

검색결과 292건 처리시간 0.029초

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • 이은우;박순용;이상환;김우남;정우진;전찬욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

PET 기판상에 ECR 화학증착법에 의해 제조된 SnO2 투명도전막의 특성 (Characteristics of Transparent Conductive Tin Oxide Thin Films on PET Substrate Prepared by ECR-MOCVD)

  • 김연석;전법주;주재백;손태원;이중기
    • Korean Chemical Engineering Research
    • /
    • 제43권1호
    • /
    • pp.85-91
    • /
    • 2005
  • ECR-MOCVD를 이용한 상온조건에서 투명전도성 고분자막이$(CH_3)_4Sn-H_2-O_2$ 분위기하에 $SnO_2$막이 제조되었다. 제조된 투명전도막의 전기적특성은 공정압력, 전자석/분사링/기판사이의 거리, 전자석의 전류, 마이크로파 출력, 증착시간과 같은 공정변수에 따라 조사되었다. 마이크로파 출력과 전자석의 전류가 증가함에 따라 낮은 전기적 저항을 갖는 $SnO_2$막이 형성되었다. 또한 이들 공정변수들이 증착된 막의 광학적특성에 미치는 영향은 중요하게 나타났다. ECR-MOCVD에 의해 제조된 막의 투과도와 반사도는 380-780 nm의 가시광영역에서 각각 93-98%, 0.1-0.5%였다. 증착된 막의 평균 grain 크기는 공정변수에 관계없이 20-50 nm범위의 값으로 일정하였다. 본 연구의 최적화된 조건에서 전기적저항은 $7.5{\times}10^{-3}ohm{\cdot}cm$, 투과도 93%, 반사도 0.2%를 갖는 막이 얻어졌다.

High aspect ratio Zinc Oxide nanorods for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.235.2-235.2
    • /
    • 2015
  • The front transparent conductive oxide (TCO) films must exhibit good transparency, low resistivity and excellent light scattering properties for high efficiency amorphous silicon (a-Si) thin film solar cells. The light trapping phenomenon is limited due to non-uniform and low aspect ratio of the textured glass [1]. We present the low cost electrochemically deposited uniform zinc oxide (ZnO) nanorods with various aspect ratios for a-Si thin film solar cells. Since the major drawback of the electrochemically deposited ZnO nanorods was the high sheet resistance and low transmittance that was overcome by depositing the RF magnetron sputtered AZO films as a seed layer with various thicknesses [2]. The length and diameters of the ZnO nanorods was controlled by varying the deposition conditions. The length of ZnO nanorods were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The uniform ZnO nanorods showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nanorods and much higher aspect ratios degraded the light scattering phenomenon. Therefore, we proposed our low cost and uniform ZnO nanorods for the high efficiency of thin film solar cells.

  • PDF

Hydrothermally deposited Hydrogen doped Zinc Oxide nano-flowers structures for amorphous silicon thin film solar cells

  • Kim, Yongjun;Kang, Junyoung;Jeon, Minhan;Kang, Jiyoon;Hussain, Shahzada Qamar;Khan, Shahbaz;Kim, Sunbo;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.236.1-236.1
    • /
    • 2015
  • The surface morphology of front transparent conductive oxide (TCO) films is very important to achieve high current density in amorphous silicon (a-Si) thin film solar cells since it can scatter the light in a better way. In this study, we present the low cost hydrothermal deposited uniform zinc oxide (ZnO) nano-flower structure with various aspect ratios for a-Si thin film solar cells. The ZnO nano-flower structures with various aspect ratios were grown on the RF magnetron sputtered AZO films. The diameters and length of the ZnO nano-flowers was controlled by varying the annealing time. The length of ZnO nano-flowers were varied from 400 nm to $2{\mu}m$ while diameter was kept higher than 200 nm to obtain different aspect ratios. The ZnO nano-flowers with higher surface area as compared to conventional ZnO nano structure are preferred for the better light scattering. The conductivity and crystallinity of ZnO nano-flowers can be enhanced by annealing in hydrogen atmosphere at 350 oC. The vertical aligned ZnO nano-flowers showed higher haze ratio as compared to the commercially available FTO films. We also observed that the scattering in the longer wavelength region was favored for the high aspect ratio of ZnO nano-flowers. Therefore, we proposed low cost and vertically aligned ZnO nano-flowers for the high performance of thin film solar cells.

  • PDF

펄스레이저증착법으로 증착한 Indium Zinc Oxide 박막의 물성 (Properties of Indium Zinc Oxide Thin Films Prepared by Pulsed Laser Deposition)

  • 최학순;정일교;신문수;김헌오;김용수
    • 한국전기전자재료학회논문지
    • /
    • 제24권7호
    • /
    • pp.537-542
    • /
    • 2011
  • Recently, n-InZnO/p-CuO oxide diode has attracted great attention due to possible application for selector device of 3-dimensional cross-point resistive memory structures. To investigate the detailed properties of InZnO (IZO), we have deposited IZO films on the fused quartz substrate using PLD (pulsed laser deposition) method at oxygen pressure of 1~100 mTorr and substrate temperature of RT$\sim600^{\circ}C$. The influence of oxygen pressure and substrate temperature on structural, optical and electrical of IZO films is analyzed using XRD (x-ray diffraction), SEM (scanning electron microscopy), UV-Vis spectrophotometry, spectroscopic ellipsometry (SE) and hall measurements. The XRD results shows that the deposited thin films are polycrystalline over $300^{\circ}C$ of substrate temperature independent of oxygen pressure. The resistivity of films was increased as oxygen pressure and substrate temperature decrease. The thickness and optical constants of the deposited films measured with UV-Vis spectrophotometer were also compared with those of broken SEM and SE results.

Electrical, Optical, and Electrochemical Corrosion Resistance Properties of Aluminum-Doped Zinc Oxide Films Depending on the Hydrogen Content

  • Cho, Soo-Ho;Kim, Sung-Joon;Jeong, Woo-Jun;Kim, Sang-Ho
    • 한국표면공학회지
    • /
    • 제51권2호
    • /
    • pp.116-125
    • /
    • 2018
  • Aluminum-doped zinc oxide (AZO) is a commonly used material for the front contact layer of chalcopyrite $CuInGaSe_2$ (CIGS) based thin film solar cells since it satisfies the requisite optical and electrical properties with low cost and abundant elemental availability. Low-resistivity and high-transmission front contacts have been developed for high-performance CIGS solar cells, and nearly meet the required performance. However, the durability of the cell especially for the corrosion resistance of AZO films has not been studied intensively. In this work, AZO films were prepared on Corning glass 7059 substrates by radio frequency magnetron sputtering depending on the hydrogen content. The electrical and optical properties and electrochemical corrosion resistance of the AZO films were evaluated as a function of the hydrogen content. With increasing hydrogen content to 6 wt%, the crystallinity, crystal size, and surface roughness of the films increased, and the resistivity decreased with increased carrier concentration, Hall mobility, oxygen vacancies, and $Zn(OH)_2$ binding on the AZO surface. At a hydrogen content of 6 wt%, the corrosion resistance was also relatively high with less columnar morphology, shallow pore channels, and lower grain boundary angles.

초음파 분무 열분해 증착 중 기판 회전 속도에 따른 플루오린 도핑 된 주석산화물 막의 전기적 및 광학적 특성 (Electrical and Optical Properties of Fluorine-Doped Tin Oxide Films Fabricated at Different Substrate Rotating Speeds during Ultrasonic Spray Pyrolysis Deposition)

  • 이기원;조명훈;안효진
    • 한국재료학회지
    • /
    • 제34권1호
    • /
    • pp.55-62
    • /
    • 2024
  • Fluorine-doped tin oxide (FTO) has been used as a representative transparent conductive oxide (TCO) in various optoelectronic applications, including light emitting diodes, solar cells, photo-detectors, and electrochromic devices. The FTO plays an important role in providing electron transfer between active layers and external circuits while maintaining high transmittance in the devices. Herein, we report the effects of substrate rotation speed on the electrical and optical properties of FTO films during ultrasonic spray pyrolysis deposition (USPD). The substrate rotation speeds were adjusted to 2, 6, 10, and 14 rpm. As the substrate rotation speed increased from 2 to 14 rpm, the FTO films exhibited different film morphologies, including crystallite size, surface roughness, crystal texture, and film thickness. This FTO film engineering can be attributed to the variable nucleation and growth behaviors of FTO crystallites according to substrate rotation speeds during USPD. Among the FTO films with different substrate rotation speeds, the FTO film fabricated at 6 rpm showed the best optimized TCO characteristics when considering both electrical (sheet resistance of 13.73 Ω/□) and optical (average transmittance of 86.76 % at 400~700 nm) properties with a figure of merit (0.018 Ω-1).

Pulsed Laser Deposition을 이용하여 GZO/Glass 기판상에 성장시킨 염료감응형 태양전지용 $TiO_2$ Blocking Layer의 특성 연구

  • 여인형;김지홍;노지형;김재원;도강민;신주홍;조슬기;박재호;문병무
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.259-259
    • /
    • 2011
  • 염료감응형 태양전지(Dye-Sensitized Solar Cells:DSSC)는 환경 친화적이며, 저가의 공정에 대한 가능성으로 기존의 고가의 결정질 실리콘 태양전지의 경제적인 대안으로 각광을 받고 있다. 최근 염료감응형 태양전지는 투명 전도성 산화막(Transparent Conducting Oxide : TCO)으로 사용되는 Fluorine Tin Oxide (FTO)가 증착된 유리기판 위에 주로 제작된다. FTO는 낮은 비저항과 가시광선 영역에서 높은 투과도를 가지는 우수한 전기-광학적 특성을 갖지만, 비교적 공정이 까다로운 Chemical Vapor Deposition (CVD)법으로 제조하며, 전체 공정비용의 60%를 차지하는 높은 생산단가로 인해 현재 FTO를 대체할 재료개발 연구가 활발히 진행되고 있다. 그 중 ZnO (Zinc Oxide)는 우수한 전기-광학적 특성과 비교적 저렴한 가격으로 새로운 TCO로써 주목받고 있다. ZnO는 넓은 energy band gap (3.4 [eV])의 육방정계 울자이트(hexagonal wurtzite) 결정 구조를 가지는II-VI족 n형 반도체 물질이며, III족 금속원소인 Al, Ga 및 In 등의 불순물을 첨가하면 TCO로서 우수한 전기-광학적 특성과 안정성을 나타낸다. 이들 물질중 $Zn^{2+}$ (0.060 nm)의 이온반경과 유사한 $Ga^{2+}$0.062 nm) 이온이 ZnO의 격자반경을 최소화 시킬 수 있다는 장점으로 최근 주목 받고 있다. 하지만 Ga-doped ZnO (GZO)의 경우 DSC에 사용되는 루테늄 계열의 산성 염료 하에 장시간 두면 표면이 파괴되는 문제가 발생하며, $TiO_2$ paste를 Printing 후 열처리하는 과정에서도 박막의 파괴가 발생할 수 있다. 이를 방지하기 위해 $TiO_2$ Blocking Layer를 GZO 투명전극 위에 증착하였다. 또한, $TiO_2$ Blocking Layer를 적용한 GZO 박막을 전면전극으로 이용하여 DSC를 제작하여 효율을 확인하였다. 2wt%의 $Ga_2O_3$가 도핑된 ZnO 박막은 20mTorr 400$^{\circ}C$에서 Pulsed Laser Deposition (PLD)에 의해 성장되었고, $TiO_2$박막은 Ti 금속을 타겟으로 이용하여 30mTorr 400$^{\circ}C$에서 증착되었다. Scanning electron microscopy (FE-SEM)을 이용한 박막 분석 결과 $TiO_2$가 증착된 GZO 박막의 경우 표면 파괴가 일어나지 않았다. Solar Simulator을 이용하여 I-V특성 측정결과 상용 FTO를 사용한 DSC 수준의 효율을 나타내었다. 이에 따라 Pulsed Laser Deposition을 이용해 제작된 GZO 기판은 $TiO_2$ Blocking Layer를 이용하여 표면 파괴를 방지할 수 있었으며, 이는 향후 염료감응형 태양전지의 투명전극에 적용 가능 할 것으로 판단된다.

  • PDF

전자빔으로 폴리사이클릭 올레핀 기판에 ITO 증착시 기판온도 및 산소 도입의 영향 (Effect of Substrate Temperature and O2 Introduction With ITO Deposition by Electron Beam Evaporation on Polycyclic Olefin Polymer)

  • 안희준;하기룡
    • 공업화학
    • /
    • 제16권6호
    • /
    • pp.742-748
    • /
    • 2005
  • 투명전극재료 indium tin oxide (ITO) 필름은 평판 디스플레이 전극재료로 널리 사용되고 있다. 이러한 ITO 필름은 마그네트론 스퍼터링법, 기상화학증착법 및 전자빔증착법 등의 방법으로 제조되어지고 있다. 본 실험에서는 전자빔 증착법으로 무게비로 $SnO_2$가 10%, $In_2O_3$가 90%인 ITO 타겟을 다른 플라스틱 기판보다 높은 유리전이 온도($Tg=330^{\circ}C$)를 가지는 polycyclic olefin polymer (POP) 플라스틱 기판에 증착시켰다. 본 연구에서는 ITO 박막의 물리적, 전기적 및 광학적 성질에 영향을 미치는 중요한 변수라 할 수 있는 기판온도와 산소도입속도가 증착된 ITO 박막의 전기적 및 광학적 성질에 미치는 영향을 살펴보았다. 주요공정 변수로는 온도 및 산소도입속도에 중점을 두어 실험하였으며 그 결과 8 sccm (Standard Cubic Centimeter per Minute)의 $O_2$, $200^{\circ}C$의 기판 온도, $5{\AA}/sec$의 증착 속도에서 $1000{\AA}$으로 증착된 ITO 박막 두께에서 우수한 전기적 광학적 성질인 $1.78{\times}10^{-3}{\Omega}{\cdot}cm$ 비저항 및 85% 광투과율을 얻을 수 있었다.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF