• Title/Summary/Keyword: Transparent

Search Result 3,791, Processing Time 0.039 seconds

AMOLED Panel Using Transparent Bottom Gate IGZO TFT (Bottom Gate IGZO 박막트랜지스터를 이용한 투명 AMOLED 패널 제작)

  • Cho, D.H.;Yang, S.H.;Byun, C.W.;Shin, J.H.;Lee, J.I.;Park, E.S.;Kwon, O.S.;Hwang, C.S.;Chu, H.Y.;Cho, K.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.39-40
    • /
    • 2008
  • We have examined post-annealing and passivation for the transparent bottom gate IGZO TFT having an inverse co-planar structure. The oxygen-vacuum two step annealing enhanced the field effect mobility up to 18 $cm^2$/Vsandthesub-threshold swing down to 0.2V/dec. However, the hysterysis and the bias stability problems could not be solved just by post-annealing. Thus, we have passivated the bottom gate IGZO TFTs with organic and inorganic materials. $Ga_2O_3$, $Al_2O_3$, $SiO_2$ and some polymer materials were effective materials for passivations. The hysterysis and the stability of the TFTs were remarkably improved by the passivations. We have manufactured the AMOLED panel with the transparent bottom gate IGZO TFT array successfully.

  • PDF

Throughput Analysis of Non-Transparent Mode in IEEE 802.16j Mobile Multi-Hop Relay Networks (IEEE 802.16j MMR 네트워크에서 Non-Transparent 중계모드의 전송률 분석)

  • Lee, Ju-Ho;Lee, Goo-Yeon;Jeong, Choong-Kyo
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.51-58
    • /
    • 2012
  • In IEEE 802.16j MMR protocol, two modes about usage of RS are proposed; one is transparent mode to enhance data throughput and the other is non-transparent mode to extend coverage. In this paper, we focus on non-transparent mode and find that the mode can also improve data throughput. Therefore, we analyze data throughput on various RS topology and their extended coverage area by simulation in IEEE 802.16j non-transparent mode. We also compare the simulation results with the single MR-BS system of which coverage is extended by higher transmission power. From the comparisons of simulation results, we see that higher throughput can be obtained in the proposed non-transparent mode.

Highly stable Zn-In-Sn-O TFTs for the Application of AM-OLED Display

  • Ryu, Min-Ki;KoPark, Sang-Hee;Yang, Shin-Hyuk;Cheong, Woo-Seok;Byun, Chun-Won;Chung, Sung-Mook;Kwon, Oh-Sang;Park, Eun-Suk;Jeong, Jae-Kyeong;Cho, Kyoung-Ik;Cho, Doo-Hee;Lee, Jeong-Ik;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.330-332
    • /
    • 2009
  • Highly stable bottom gate thin film transistors(TFTs) with a zinc indium tin oxide(Zn-In-Sn-O:ZITO) channel layer have been fabricated by rf-magnetron co-sputtering using a indium tin oxide(ITO:90/10), a tin oxide and a zinc oxide targets. The ZITO TFT (W/L=$40{\mu}m/20{\mu}m$) has a mobility of 24.6 $cm^2$/V.s, a subthreshold swing of 0.12V/dec., a turn-on voltage of -0.4V and an on/off ratio of >$10^9$. When gate field of $1.8{\times}10^5$ V/cm was applied with source-drain current of $3{\mu}A$ at $60^{\circ}C$, the threshold voltage shift was ~0.18 V after 135 hours. We fabricated AM-OLED driven by highly stable bottom gate Zn-In-Sn-O TFT array.

  • PDF

Top gate ZnO-TFT driving AM-OLED fabricated on a plastic substrate

  • Hwang, Chi-Sun;Kopark, Sang-Hee;Byun, Chun-Won;Ryu, Min-Ki;Yang, Shin-Hyuk;Lee, Jeong-Ik;Chung, Sung-Mook;Kim, Gi-Heon;Kang, Seung-Youl;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1466-1469
    • /
    • 2008
  • We have fabricated 2.5 inch QQCIF AM-OLED panel driven by ZnO-TFT on a plastic substrate for the first time. The number of photo mask for the whole panel process was 5 and the TFT structure was top gate with active protection layer as a first gate insulator. Optimizing the process for the substrate buffer layer, active layer, ZnO protection layer, and gate insulator was key factor to achieve the TFT performance enough to drive OLED. The ZnO TFT has mobility of $5.4\;cm^2/V.s$, turn on voltage of -6.8 V, sub-threshold swing of 0.39 V/decade, and on/off ratio of $1.7{\times}10^9$. Although whole process temperature is below $150^{\circ}C$ to be suitable for the plastic substrate, performance of ZnO TFT was comparable to that fabricated at higher temperature on the glass.

  • PDF

An Analysis of Application of Transparent Materials in Interior Space (투명성 효과를 위한 재료의 특성 및 적용 방법)

  • Chung, Phil-Young
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.7 no.2
    • /
    • pp.19-24
    • /
    • 2007
  • This study attempts to examine and to analyze the characteristics of transparent materials and its methods to apply in space. the ability to see through a physical element, whether it is clear glass, sandblasted acrylic, or a delicate fabric, can have a dramatic and sensory effect on the overall perception of a space. The various range of Transparent materials and product in glass, plastic, fabric, and grid now gives us the potential to maximize the flow of light in our enclosed space. This research will explore how transparent, translucent, and semi-opaque elements can be used within the interior with full range of see-through materials. The transparent materials can be divided in two level - as structural elements and as stylish accessories. A glass partition or floor, metal mesh stairs can create divisions or link one space to another while maintaining effective levels of natural light. there is also various level of products from glass chair to basin. With the enthusiasm for using transparent materials, transparent materials will be more decorative and powerful application while still maximize the highest possible flow of light.

  • PDF

Hybrid Transparent Conductor by using Solution-Processed AgNWs for High-Performing Si Photodetectors

  • Kim, Hong-Sik;Kim, Joondong
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.116-120
    • /
    • 2015
  • A hybrid transparent conducting layer was applied for Si photodetector. To realize the hybrid transparent conducting layer, a 200 nm-thick ITO layer was deposited onto a Si substrate, following by a solution-processed AgNWs-coating on the ITO. The hybrid transparent conducting layer showed an excellent low electric resistance of $15.9{\Box}/{\Omega}$ with a high optical transparency of 86.89%. Due to these optical and electrical benefits, the hybrid transparent conductor-embedding Si diode provides an extremely high rectifying ratio of 3386. Under light-illumination, the hybrid transparent conductor device provides extremely high photoresponses for broad wavelengths. This implies that a functional design for hybrid transparent conductor is crucial for photoelectric devices and applications.

The Ethics of Multinational Enterprises and ESG Response: Suggestions for Transparent Management

  • LEE, Chun-Su;CHO, Yoonkyo;KIM, Byong-Goo
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.10 no.3
    • /
    • pp.41-50
    • /
    • 2022
  • Purpose - Through multinational corporate ethics and environmental, social, and governance (ESG), various policy and strategic countermeasures for transparent management in the management and economic fields are presented. Research design, data, and methodology - A literature review is conducted to find important areas for transparent management and to summarize and present transparent management countermeasures based on simple brainstorming opinions from experts. Result - Issues facing transparent management are presented. In particular, multinational enterprises present cases involving prevention of transfer prices and tax avoidance in relation to Industry 4.0. Additionally, a plan is presented to establish a corruption-free economic system through the practice of ESG transparency, ethical management of social enterprises, and transparent management. Conclusion - According to the brainstorming opinions of experts, ESG management and ethical management should be the cornerstone of transparent management in the future. Therefore, it is necessary to institutionally supplement the imposition of digital taxes on fourth industrial companies.

Research on Transparent LED Display with Use of Metal Mesh (메탈메쉬를 활용한 투명 LED 디스플레이에 관한 연구)

  • Hwang, In-Kwan;Roh, Su-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.10
    • /
    • pp.10-17
    • /
    • 2015
  • Transparent LED display is providing city residents with different attractions via information services and landscape and increasing demand is detected in various areas. It is true that majority of the current demand in transparent electrode material was found and used in ITO but limitations in capacity and economic efficiency led to the need for continuous research and technology development via new materials. As a new material, metal mesh has 85% of the materials to substitute ITO and is widely used due to low-cost and high-conductive rate. Maintenance of transparent LED display utilizing metal mesh compared to existing ITO transparent display is much easier as it not only saves resources but is also economical. Thus the objective of this paper lies in proposing the utilization of metal mesh in transparent LED display prototype to enable economical use of transparent LED display technology and to expand the market and to also propose transparent LED display development method via metal mesh and manufacture a prototype based on the method. And a characteristic comparison test between ITO and metal mesh provides the possibility of using metal mesh as a transparent electrode material in transparent LED display development.

NEW OPTICALLY TRANSPARENT MATERIALS FOR TRANSPARENT ELECTRONICS AND DISPLAYS

  • Ju, Sang-Hyun;Liu, Jun;Li, Jianfeng;Chen, Po-Chiang;Zhou, Chongwu;Facchetti, Antonio;Janes, David B.;Marks, Tobin J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.973-974
    • /
    • 2008
  • Optically transparent and flexible electronic circuits and displays are attractive for next-generation visual technologies, including windshield displays, head-mounted displays, and transparent screen monitors. Here we report on the fabrication of transparent transistors and circuits based on the combination of nanoscopic dielectrics and organic, inorganic, or hybrid semiconductors. Furthermore, the first demonstration of a transparent and flexible AMOLED display driven solely by $In_2O_3$ nanowire transistors (NWTs) is reported. The display region exhibits an optical transmittance of ~35% and a green peak luminance of ${\sim}300\;cd/m^2$. These results indicate that NWT-based drive circuits are attractive for fully transparent display technologies.

  • PDF

Vacuum thermal evaporated transparent cathodes for organic light-emitting devices (OLED를 위한 진공 열 증착 투명 음극 형성 기술)

  • Moon, Dae-Gyu
    • Vacuum Magazine
    • /
    • v.1 no.2
    • /
    • pp.19-23
    • /
    • 2014
  • Transparent and top emission organic light-emitting device (OLEDs) are the important issues in realizing new display applications such as see-through electronic displays, and flexible displays. The cathode of the transparent and top emission OLEDs should be transparent in the visible light and should not give any damage to the underlying organic layers, in addition to its intrinsic role of injecting electrons into the organic layers. Several authors have investigated the transparent conducting oxide films prepared by sputtering methods. They have introduced the sophisticated sputtering process for reducing the damages. Other groups have developed thermally evaporated transparent cathodes which are believed to be damage free without causing any permanent defect to the organic layers. This review focuses on the vacuum evaporated damage free transparent cathodes.