• Title/Summary/Keyword: Transonic flow

Search Result 205, Processing Time 0.023 seconds

Effect of Divergent Trailing Edge Modification of Supercritical Airfoil in Transonic Flow (천음속유동에서 초임계익형 후연확대수정의 영향)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.183-189
    • /
    • 1997
  • The computation of the flow around a supercritical airfoil with a divergent trailing edge(DTE) modification(DLBA 243) is compared to that of original supercritical airfoil(DLBA 186). For this computation, Reynolds-Averaged Navier-Stokes equations are solved with a linearized block implicit ADI method and a mixing length turbulence model. Results show the effects of the shock and separated flow regions on drag reduction due to DTE modification. Results also show that DTE modification accelerates the boundary layer flow near the trailing edges which has an effect similar to a chordwise extension that increases circulation and is consistent with the calculated increase in the recirculation region in the wake. Airfoil with DTE modification achieves the same lift coefficient at a lower incidence and thus at a lower drag coefficient, so that lift-to-drag ratio is increased in transonic cruise conditions compared to the original airfoil. The reduction in drag due to DTE modification is associated with weakening of shock strength and delay of shock which is greater than the increase in base drag.

  • PDF

Turbulent flow fields analysis using CFDS scheme (CFDS기법을 이용한 난류 유동장 해석)

  • Moon S. M.;Lee J. S.;Kim C.;Rho O. H.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.51-59
    • /
    • 2001
  • An evaluation of one zero-equation and two one-equation eddy viscosity-transport turbulence closure models as implemented CFDS(Characteristic Flux Difference Splitting ) code is presented herein. Comparisons of Baldwin-Lomax model as zero-equation and Baldwin-Barth and Spalart-Allmaras model as one-equation are presented for three test cases, first inlvolving the 3 dimensional supersonic flow at M=1.98 over tangent ogive cylinder, second involving the 2 dimensional transonic flow at M=0.79 over RAE 2822 airfoil, third involving the 3 dimensional transonic flow at M=0.84 over ONERA M6 wing. The numerical results of CFDS code will also examined through direct comparison with experimental data.

  • PDF

Parametric Study on the Aerodynamic Design of Axial-Flow Turbine Blades Using Two-Dimensional Navier-Stokes Equations (Navier-Stokes 방정식에 의한 축류터빈 블레이드의 공력학적 설계변수 특성 연구)

  • Chung, Ki-Seob;Chung, Hee-Taeg;Park, Jun-Young;Baek, Je-Hyun;Chang, Beom-Ik;Cho, Soo-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.169-175
    • /
    • 2000
  • A design method for transonic turbine blades is developed based on Navier-Stokes equations. The present computing process is done on the four separate steps, 1.e., determination of the blade profile, generation of the computational grids, cascade flow simulation and analysis of the computed results in the sense of the aerodynamic performance. The blade shapes are designed using the cubic polynomials under the control of the design parameters. Numerical methods for the flow equations are based on Van-Leer's FVS with an upwind TVD scheme on the finite volume. Applications are made to the VKI transonic rotor blades. Computed results are analyzed with respect to the aerodynamic performance and are compared with the experimental data.

  • PDF

NUMERICAL SIMULATION OF A TRANSONIC AIRFOIL IN THE CLOUD WITH THE DROPLET-LADEN INVISCID AIR FLOW MODEL (액적이 있는 비점성 공기유동 모델을 이용한 구름속의 천음속 에어포일 수치해석)

  • Yeom, G.S.;Chang, K.S.;Baek, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.291-293
    • /
    • 2011
  • In this paper, the problem of transonic aerodynamic characteristics of a NACA0012 airfoil is numerically investigated in the inviscid gas-droplet two-phase flow with the compressible two-fluid model. In the present study, the airfoil flight in the cloud is simulated by taking account of the viscous drag of the droplets, the heat transfer, the phase change, and the droplet fragmentation The two-fluid equation system is solved by the fractional-step method and the WAF-HIL scheme. The effects of size and volume fraction of the droplets on the flow characteristics of the airfoil in the cloud are elaborated and discussed.

  • PDF

Numerical Analysis for the Performance of an Axial-flow Compressor with Three-Dimensional Viscous Effect (삼차원 점성 효과를 고려한 축류 압축기의 성능에 대한 수치해석)

  • Han Y. J.;Kim K. Y.;Ko S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.182-187
    • /
    • 2003
  • Numerical analysis of three-dimensional vicous flow is used to compute the design speed operating line of a transonic axial-flow compressor. The Navier-Stokes equation was solved by an explicit finite-difference numerical scheme and the Baldwin-Lomax turbulence model was applied. A spatially-varying time-step and an implicit residual smoothing were used to improve convergence. Two-stage axial compressor of a turboshaft engine developed KARI was chosen for the analysis. Numerical results show reasonably good agreements with experimental measurements made by KARI. Numerical solutions indicate that there exist a strong shock-boundary layer interaction and a subsequent large flow separation. It is also observed that the shock is moved ahead of the blade passage at near-stall condition.

  • PDF

Evaluation of Turbulence Models for A Compressor Rotor (축류압축기 회전차유동에 대한 난류모델의 성능평가)

  • Lee, Yong-Kab;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.179-186
    • /
    • 1999
  • Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67), and to evaluate the performances of k-$\epsilon$ and Baldwin-Lomax turbulence models. A finite volume method is used for spatial discretization. And, the equations are solved implicitly in time with the use of approximate factorization. Upwind difference scheme is used for inviscid terms, but viscous terms are centrally differenced. The flux-difference-splitting of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. And, the results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, we conclude that k-$\epsilon$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost same.

  • PDF

Aerodynamic performance of Modified Sonic Arc Airfoil (수정 Sonic Arc 익형의 공력성능)

  • Lee, Jang-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.581-585
    • /
    • 2007
  • Sonic arc airfoil derived from the TSD theory is modified to new airfoil shape and its aerodynamic performance in transonic flow is investigated. The numerical simulation using Euler equations for the modified sonic arc airfoil is performed. The numerical results are compared with the aerodynamic performance of NACA0012 airfoil, of supercritical airfoil, and of NACA64A210 airfoil. In the same free stream Mach number of transonic flow, the pressure drag of the modified sonic arc airfoil is smaller than that of NACA0012 airfoil and the lift-drag ratio of the modified sonic arc airfoil is much larger than that of NACA0012 airfoil. In the comparison of the drag-divergence Mach number of transonic flow, the drag-divergence Mach number of the modified sonic arc airfoil is larger than that of NACA64A210 airfoil but is smaller than that of supercritical airfoil.

Numerical Prediction of Acoustic Load Around a Hammerhead Launch Vehicle at Transonic Speed (해머헤드 발사체의 천음속 음향하중 수치해석)

  • Choi, Injeong;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • During atmospheric ascent of a launch vehicle, airborne acoustic loads act on the vehicle and its effect becomes pronounced at transonic speed. In the present study, acoustic loads acting on a hammerhead launch vehicle at a transonic speed have been analyzed using ��-ω SST based IDDES and the results including mean Cp, Cprms, and PSD are compared to available wind-tunnel test data. Mesh dependency of IDDES results has been investigated and it has been concluded that with an appropriate turbulence scale-resolving computational mesh, the characteristic flow features around a transonic hammerhead launch vehicle such as separated shear flow at fairing shoulder and its reattachment on rear body as well as large pressure fluctuation in the region of separated flow behind the boat-tail can be predicted with reasonable accuracy for engineering purposes.

An Experimental Study on Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 날개 유동에 관한 실험적 연구)

  • Lee, Dong-Won;Gwon, Sun-Beom;;Kim, Byeong-Ji;Kim, Tae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.11-16
    • /
    • 2006
  • An experimental study of the transonic flows over NACA and double wedge airfoils was conducted with a shock tube. The configuration of test section with a slotted wall and chamber was designed and tested to minimize wall and reflected shock wave effects and use the shock tube as simple and less costly wind tunnel generating the relatively high Reynolds numbers transonic flow. Transonic airfoil flows at hot gas Mach numbers of 0.80~0.84, Reynolds number of about $1.2{\times}10^6$ on airfoil chord length and angles of attack of $0^{\circ}$ and $2^{\circ}$ were visualized with the shadowgraph method. The shock wave profiles on the airfoils were compared with the corresponding results from the conventional transonic wind tunnel tests. The experimental results showed that present shock tube exhibited the proper performance characteristics as transonic wind tunnel for tested Mach number range and airfoils.

CFD-EFD Mutual Validation Using a CFD Solver Based on Unstructured Meshes Developed at KAIST (KAIST 비정렬격자 기반 CFD 해석자를 이용한 CFD-EFD 상호 비교 검증)

  • Jung, Seongmun;Han, Jaeseong;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.259-267
    • /
    • 2017
  • Flow fields around a KARI-11-180 airfoil, SDM and transonic body are numerically simulated by using an unstructured meshes based compressible flow solver developed at KAIST. RANS equations are solved to analyse the flow fields and Roe's FDS method is adopted to evaluate convective fluxes. Turbulence effect of the flow fields is modeled by a SA model, SST model and ${\gamma}-{\widetilde{Re}}_{{\theta}t}$ model. It is found that smaller drag coefficients are predicted for the KARI-11-180 airfoil when a transition phenomenon is considered and small deviations exist between CFD and EFD results. For the SDM, flow separation is observed at a leading edge and calculated aerodynamic properties show similar tendencies to experimental results. A shock wave on main wings of the transonic body is successfully captured by the present flow solver at a Mach number 0.9. Estimated pressure profiles by means of the present CFD method also agree well with those of wind tunnel results.