• Title/Summary/Keyword: Transmitted light

Search Result 295, Processing Time 0.025 seconds

Development of Oil Content Meter for Oily Water Separator in Ship (선박 유수분리기용 유분검출기의 개발)

  • 황정웅;정병건;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.338-344
    • /
    • 2001
  • According to the MARPOL 73/78 of Convention, all ships should have oil filtering equipment and 15 ppm bilge which satisfy Requirements of MARPOL 73/78. This study is concerned with designing and manufacturing a prototype Oil content Meter(OCM) used in machinery area of ship. The prototype OCM is composed of two parts which are oil content sensing module and data processing unit. The oil content sensing module consists of infra-red light source, photo-diode light receivers, and a glass tube for bilge water sample. The data processing unit has a micro-processor as hard core and peripheral devices. The experimental results of prototype OCM and analysis of collected data reveal linear property between transmitted light and scattered light as long as the bilge water has low level content of oil. And this linear property leads to a oil content detecting method which is programmed and loaded into the data processing unit. The performance of the prototype OCM is compared with that of the commercial OCM in the market.

  • PDF

Reducing the Effects of Noise Light in a Visible Light Communication System Using Two Color LEDs (가시광통신 시스템에서 2색 LED를 이용한 잡음광의 영향 감소)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.429-433
    • /
    • 2012
  • In this paper, we reduced the optical noise interference in a visible light communication system using two color LEDs. In the transmitter, the original and the inverted signals of the transmitted data modulated a red LED and a blue LED, respectively. In the receiver, a differential detector which is composed of two photodetectors and an optical red filter detected the mixed signal radiated from the two LEDs. In an environment that the optical noise from a fluorescent lamp exists, the signal-to-noise ratio in this system was improved by about 20dB compared to that in the conventional system which uses a single LED and a single photodetector.

Time Division Transmission of Visible Light Channels Using Power Line Frequency (전력선 주파수를 이용한 가시광 채널의 시분할 전송)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.349-355
    • /
    • 2014
  • In this paper, we developed a new method to transmit multiple visible light channels in time division mode using the AC power line frequency in order to prevent the crosstalk between adjacent optical signals. Synchronizing pulses are generated from the 220 V power line, and one pulse period is subdivided into several time slots for visible light channels. Each channel transmits data in a predefined time slot without interfering adjacent channels. In experiments, synchronizing pulses with a repetition rate of 240 Hz were generated from the 60 Hz power line, and three VLC channels with a bit rate of 9.6 kbps transmitted data independently using the time slots between synchronizing pulses. This configuration is very useful in constructing time division VLC networks for multiple sensors.

LED transceivers with beehive-shaped reflector for visible light communication

  • Sohn, Kyung-Rak;Kim, Min-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.169-174
    • /
    • 2014
  • This paper proposes a novel beehive-shaped reflector for application to light-emitting diode (LED) transceivers for illumination and bi-directional visible light communication (VLC). By using a diffuse propagation model extended to line-of-sight and direct signals, the distribution of illuminance and the path loss of the transceiver are investigated to evaluate the performance of the beehive-shaped reflector. To verify bi-directional communication, a VLC-based image capture system, comprising a complementary metal-oxide semiconductor (CMOS) image sensor and video processor unit, is demonstrated. Real-time images captured by the CMOS camera are successfully transmitted to the monitoring system via a free-space channel at a rate of 115.2 kbps.

Position Detection System of Robot by using Visible Light Communication (VLC) (가시광통신을 이용한 로봇 위치확인 시스템)

  • Kim, Eung Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.119-123
    • /
    • 2016
  • In this paper, we have fabricated the position detection system with LED and optical sensor to detect a position and trace of robot through visible light communication (VLC). The fabricated position detection system did not have been affected by sunlight in outdoor and a fluorescent light in building. Because 4 LEDs, respectively, transmitted different signals, we have known the position of robot. And we have also observed a trajectory of robot in real time.

Temperature Control and Wafer Temperature Distribution Simulation in RTA System (RTA 시스템에서의 온도제어와 웨이퍼상의 온도분포 Simulation)

  • 조병진;김경태;김충기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.6
    • /
    • pp.647-653
    • /
    • 1988
  • A rapid thermal annealing system using tungsten halogen lamp has been designed and assembled. A control scheme where the temperature control is executed with calculated wafer temperature by considering the thermocouple delay rather than measured thermocouple temperature,is proposed. This control scheme gives more accurate control of the wafer temperature. In addition, the distribution of transmitted light power to the wafer in the system has been simulated, and lamp interval modification has been able to give more uniform light power distribution. Considering incident light spectrum, absorption, reflection, radiation of silicon, etc., temperature profile has been simulated. When the light power uniformity on the 3" wafer is below 1%, the temperature uniformity is about 2%.

  • PDF

Illumination Control of LEDs in Visible Light Communication Using Manchester Code Transmission

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.303-309
    • /
    • 2016
  • In this paper, we introduce a new method for controlling the illumination of LEDs in visible light communication (VLC) by changing the duty cycle of Manchester code. When VLC data were transmitted in Manchester code, the average optical power of the LEDs was proportional to the duty cycle. In experiments, we controlled the illumination of a $3{\times}3$ LED array from 10% to 90% of its peak value by changing the duty cycle of the Manchester code. The synchronizing clocks required for encoding and decoding the Manchester code were supplied by pulse generators that were connected to a 220 V power line. All pulse generators made the same pulses with a repetition frequency of 120 Hz, and they were synchronized with the full-wave rectified voltage of the power line. This scheme is a very simple and useful method for constructing indoor wireless sensor networks using LED light.

Wireless Digital Signal Transmission using Visible Light Communication with High-Power LEDs

  • Ng, Xiao-Wei;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.139-140
    • /
    • 2010
  • This paper presents an indoor prototype for wireless digital signal transmission using Visible Light Communications (VLC) in which high power Light Emitting Diode (LED) is used. Using low cost and off-the-shelf components, the transmitter module is constructed using an AVR Atmega128 microcontroller and commercial white beam LEDs. Modulating the light intensity of the LED enables digital signals to be transmitted across the optical link. The receiver module employs a high speed PIN photodetector for optical signal detection and a recovery circuit for optical-electro signal conversion. By sending digitalized data via VLC technology, many applications can be realized in the areas of consumer advertising, traffic safety information and disaster control.

  • PDF

Si/SiO2 Multilayer-based Fabry-Perot Filter for 4.26 ㎛ Filtering in Carbon Dioxide Detection (이산화탄소 감지를 위한 4.26 ㎛ 필터용 poly-Si/SiO2 다층 박막 기반의 패브리 페로-필터)

  • Do, Nam Gon;Lee, Junyeop;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.56-60
    • /
    • 2021
  • In this study, the relationship between the transmitted light intensity and full-width-at-half-maximum (FWHM) of a Fabry-Perot filter was investigated. The measured refractive indices and absorption coefficients of the fabricated thin films were applied to the Fabry-Perot filter via simulations using optical software. Although considerable research has been conducted on Fabry-Perot filters, this study focused on the usefulness of 4.26-㎛ infrared filtering in carbon dioxide detection. Optical analysis was performed considering the effects of the thickness, refractive indices, and number of thin films in a distributed Bragg reflector. Ultimately, a clear trade-off relationship was observed wherein the transmitted light intensity decreased as the number of multilayers increased; however, the FWHM was observed to be narrower.

Visible Light Identification System for Smart Door Lock Application with Small Area Outdoor Interface

  • Song, Seok-Jeong;Nam, Hyoungsik
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.90-94
    • /
    • 2017
  • Visible light identification (VLID) is a user identification system for a door lock application using smartphone that adopts visible light communication (VLC) technology with the objective of high security, small form factor, and cost effectiveness. The user is verified by the identification application program of a smartphone via fingerprint recognition or password entry. If the authentication succeeds, the corresponding encoded visible light signals are transmitted by a light emitting diode (LED) camera flash. Then, only a small size and low cost photodiode as an outdoor interface converts the light signal to the digital data along with a comparator, and runs the authentication process, and releases the lock. VLID can utilize powerful state-of-the-art hardware and software of smartphones. Furthermore, the door lock system is allowed to be easily upgraded with advanced technologies without its modification and replacement. It can be upgraded by just update the software of smartphone application or replacing the smartphone with the latest one. Additionally, wireless connection between a smartphone and a smart home hub is established automatically via Bluetooth for updating the password and controlling the home devices. In this paper, we demonstrate a prototype VLID door lock system that is built up with LEGO blocks, a photodiode, a comparator circuit, Bluetooth module, and FPGA board.