• 제목/요약/키워드: Transmittance Path

검색결과 17건 처리시간 0.024초

태양 엄폐법에 의한 연직 오존 분포 도출과 민감도 실험 (RETRIEVAL OF VERTICAL OZONE PROFILE USING SATELLITE SOLAR OCCULTATION METHOD AND TESTS OF ITS SCNSITIVITY)

  • 조희구;윤영준;박재형;이광목;요코다타쓰야
    • Journal of Astronomy and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.119-138
    • /
    • 1998
  • 최근에 인공위성에 의한 대기 중의 미량 기체 관측이 활발하다. 따라서 이들 자료의 처리기법 개발이 매우 중요하다. 그러므로 이 연구에서는 인공위성에 의해 태양 엄폐범(太陽 掩蔽法: Solar Occultation Method)으로 관측한 대기 주연 경로(周緣 經路: limb path)의 접선 고도별 평균 투과율로부터 연직 오존 분포를 도출하고, 온도와 기압 오차의 민감도 오차의 민감도 실험을 하고자 한다. 여기에서 서울의 반전(Umkehr)관측에 의하여 구한 연평균 연직 오존분포로 계산된 평균 투과율을 인공위성으로부터 관측된 평균 투과율로 가정하였다. HALOE SIDS (Hallogen Occultation Experiment Simulated Instrument Data Set)의 연직 오존 자료를 초기치로 하고 온도와 기압의 연직 분포를 입력값으로 하여 대기 평균 투과율을 파장 $9.89{\mu}m$$10.02{\mu}m$ 사이에서 접선고도별로 계산했다. 관측 평균 투과율에 대하여 계산한 평균 투과율로부터 오존 분포 법으로 접선고도 10km에서 50km까지 매 3km마다 오존 농도를 도출하였다. 도출된 서울의 연직 오존 분포를 관측한 연직 오존 분포와 비교하였다. 이 결과에 의하면 전 고도에 걸쳐서 서울의 연직 오존 분포가 오차가 거의 없을 정도로 정확하게 도출되었다. 그리고 민감도 실험을 위하여 관측 평균 투과율에$\pm0.001$, 각 층의 온도에 $\pm3K$, 그리고 각 층에 기압의 $\pm3\%$의 강제 오차를 각각 주었다. 이들 각 오차는 ADEOS/ILAS 관측 오차에 근거하였다. 이들의 결과는 투과율 오차에 대하여 -6.5%에서 +6.9%, 온도 오차에 대하여 -9.5%에서 +10.5, 그리고 기압 오차에 대하여 -5.1%에서 +5.4%의 고도별 오존 량 오차가 각각 나타났다. 태양 엄폐 법에 의해 비교적 정확한 연직 오존 분포를 도출할 수 있었다. 이 도출 과정에서 특히 온도 관측이 중요함을 알 수 있었다.

  • PDF

TFT-LCD 3차원 시뮬레이션에서의 광 경로에 대한 고려 (Study for the Real Optical Path in the TFT-LCD 3-dimensional Simulation)

  • 최경욱;김기범;박우상
    • 한국전기전자재료학회논문지
    • /
    • 제19권2호
    • /
    • pp.195-199
    • /
    • 2006
  • We report a novel simulation method to calculate optical transmission considering the real paths of optic introduced in a unit pixel of TFT-LCDs using three-dimensional molecular director simulation of the tensor model. The simulation of optical path transmission profile was carried out by calculating new permittivity considered the real paths of optic in liquid crystal cell. As a result, it was clarified that the electro-optic characteristics such as movement of disclination line, contrast ratio and transmittance profile show a large difference according to the viewing angle compared with the conventional method.

Improvement of Field Calibration of a Transmissometer for Visibility Measurement

  • Kim Kyung W.;Kim Young J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제21권E2호
    • /
    • pp.49-56
    • /
    • 2005
  • A long-path transmissometer is one of the optical instruments widely used to measure atmospheric light extinction coefficient without enclosing a light beam and perturbing aerosols. Over the past two decades, a number of measurements have been carried out using the long-path transmissometer manufactured by OPTEC, Inc. Calibration of the transmissometer should be performed when any component of the transmissometer system is interchanged or installation condition is changed. For a better calibration of the transmissometer, application of a modified calibration method for the existing neutral density (ND)-filter method was recommended for the computation of the atmospheric transmittance using model MODTRAN 4 in this study. It was revealed that the measured light extinction coefficient from the transmissometer which was calibrated using the existing ND-filter method could be overestimated due to the assumption of the atmospheric transmittance suggested by OPTEC, Inc. The uncertainty of the measured light extinction coefficient from the transmissometer calibrated based on the modified ND-filter method was calculated to be approximately $13Mm^{-1}$.

절연막을 이용한 단면 표면조직화 결정질 실리콘 태양전지 (The Single-Side Textured Crystalline Silicon Solar Cell Using Dielectric Coating Layer)

  • 도겸선;박석기;명재민;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.245-248
    • /
    • 2011
  • Many researches have been carried out to improve light absorption in the crystalline silicon solar cell fabrication. The rear reflection is applied to increase the path length of light, resulting in the light absorption enhancement and thus the efficiency improvement mainly due to increase in short circuit current. In this paper, we manufactured the silicon solar cell using the mono crystalline silicon wafers with $156{\times}156mm^2$, 0.5~3.0 ${\Omega}{\cdot}cm$ of resistivity and p-type. After saw damage removal, the dielectric film ($SiN_x$)on the back surface was deposited, followed by surface texturing in the KOH solution. It resulted in single-side texturing wafer. Then the dielectric film was removed in the HF solution. The silicon wafers were doped with phosphorus by $POCl_3$ with the sheet resistance 50 ${\Omega}/{\Box}$ and then the silicon nitride was deposited on the front surface by the PECVD with 80nm thickness. The electrodes were formed by screen-printing with Ag and Al paste for front and back surface, respectively. The reflectance and transmittance for the single-sided and double-sided textured wafers were compared. The double-sided textured wafer showed higher reflectance and lower transmittance at the long wavelength region, compared to single-sided. The completed crystalline silicon solar cells with different back surface texture showed the conversion efficiency of 17.4% for the single sided and 17.3% for the double sided. The efficiency improvement with single-sided textured solar cell resulted from reflectance increase on back surface and light absorption enhancement.

  • PDF

적외선 카메라-레이저 공통광학계의 레이저빔 열 영향성 분석 (Analysis of Laser-beam Thermal Effects In an Infrared Camera and Laser Common-path Optical System)

  • 김성재
    • 한국광학회지
    • /
    • 제28권4호
    • /
    • pp.153-157
    • /
    • 2017
  • 지향성적외선방해장비의 정렬 정밀도를 높히고 중량을 감소시키기 위해 적용된 적외선 카메라-레이저 공통광학계 구조에서 영상 성능 저하를 야기시키는 레이저빔 열 영향성을 분석하였다. 높은 에너지 밀도를 가지는 레이저빔이 광부품에 흡수되면 열이 발생하고 온도가 상승한다. 공통광학계 광부품 표면에서 발생한 열은 시스템 투과율을 감소시켜 적외선 카메라의 영상 품질을 저하시킬 수 있다. 지향성적외선방해장비의 운용개념을 고려하여 파장 $4{\mu}m$, 출력 3 W의 레이저빔이 10초간 미러(알루미늄, 실리카 글래스, 실리콘) 및 렌즈(사파이어, 셀레늄화아연, 실리콘, 게르마늄) 재료에 조사되는 상황을 가정하여 온도 분포를 계산하였다. 계산 결과, 미러 재료로는 실리카 글래스, 렌즈 재료로는 사파이어의 온도 상승이 상대적으로 컸고, 재료 온도 분포에 가장 큰 영향을 미치는 요소는 재료의 레이저빔 흡수율과 열전도도임을 확인하였다. 결론적으로 적외선 카메라-레이저 공통광학계에 사용하는 광부품은 흡수율이 낮고 열전도도가 높은 특성을 갖도록 선정되어야 광부품 온도 상승에 의한 적외선 카메라의 영상 품질 저하를 방지할 수 있다.

음선 추적법 기반 TRM을 이용한 반사 및 굴절 환경 속의 소음원 탐색에 대한 연구 (Source finding in reflection and refraction environment using based on ray tracing method TRM)

  • 문상일;이재형;최종수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.727-732
    • /
    • 2014
  • The goal is to find the position of the sound source with the TRM at reflections and refractions environment. The Fermat's principle applied to the ray tracing method are expected to follow the acoustic path in order to obtain acoustic distance and transmittance to. Utilizing them in the TRM was confirmed rear reflectance affect on estimated position, resolution and side lobe. And the TRM performance were superior to one of the beam forming techniques.

  • PDF

OLED Barrier와 Encapsulation을 위한 원자층 증착 Polymer / Al2O3 다층 필름의 온습도 신뢰도 평가 분석 (Reliability Evaluation of Atomic layer Deposited Polymer / Al2O3 Multilayer Film for Encapsulation and Barrier of OLEDs in High Humidity and Temperature Environments)

  • 이사야;송윤석;김현;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.1-4
    • /
    • 2017
  • Encapsulation of organic based devices is essential issue due to easy deterioration of organic material by water vapor. Atomic layer deposition (ALD) is a promising solution because of its low temperature deposition and quality of the deposited film. Moisture permeation has a mechanism to pass through defects, Thin Film Encapsulation using inorganic / organic / inorganic hybrid film has been used as promising technology. $Al_2O_3$ / Polymer / $Al_2O_3$ multilayer film has shown excellent environmental protection characteristics despite of thin thicknesses of the films.

  • PDF

Development of Two-color Radiation Thermometer for Harsh Environments

  • Mohammed, Mohammed Ali Alshaikh;Kim, Ki-Seong
    • 한국분무공학회지
    • /
    • 제21권4호
    • /
    • pp.184-194
    • /
    • 2016
  • Many industrial processes require reliable temperature measurements in harsh environments with high temperature, dust, humidity, and pressure. However, commercially-available conventional temperature measurement devices are not suitable for use in such conditions. This study thus proposes a reliable, durable two-color radiation thermometer (RT) for harsh environments that was developed by selecting the appropriate components, designing a suitable mechanical structure, and compensating environmental factors such as absorption by particles and gases. The two-color RT has a simple, compactly-designed probe with a well-structured data acquisition system combined with efficient LabVIEW-based code. As a result, the RT can measure the temperature in real time, ranging from 300 to $900^{\circ}C$ in extremely harsh environments, such as that above the burden zone of a blast furnace. The error in the temperature measurements taken with the proposed two-color RT compared to that obtained using K-type thermocouple readouts was within 6.1 to $1.4^{\circ}C$ at a temperature range from 200 to $700^{\circ}C$. The effects of absorption by gases including $CO_2$, CO and $H_2O$ and the scattering by fine particles were calculated to find the transmittance of the two wavelength bands of operation through the path between the measured burden surface and the two-color probe. This method is applied to determine the transmittance of the short and long wavelength bands to be 0.31 and 0.51, respectively. Accordingly, the signals that were measured were corrected, and the true burden surface temperature was calculated. The proposed two-color RT and the correction method can be applied to measure temperatures in harsh environments where light-absorbing gases and scattering particles exist and optical components can be contaminated.

디젤기관 배기 배출물에 있어서 매연 응집체 크기 및 농도의 시간적 계측에 관한 연구 (A Study on Temporal Measurement of Size and Concentration for Soot Aggregates among Exhaust Emissions in Diesel Engines)

  • 배명환;;배창환
    • 한국자동차공학회논문집
    • /
    • 제15권1호
    • /
    • pp.116-124
    • /
    • 2007
  • An optical method to measure the size and number density of soot aggregates in diesel exhaust has been proposed in this study. Two laser beams in co-axial alignment transmit a soot loaded exhaust gas flow, and the transmittance at each wavelength is detected by a photo diode simultaneously. The volume equivalent diameter and number density of soot aggregates in the optical path can be theoretically given by the transmittance values measured at two wavelengths. A test conducted by a single cylinder, 4 cycle, small and DI diesel engine shows that the temporal variations of the size and number density of soot aggregates in the diesel exhaust can be measured by the proposed method at a transient mode operation. It is found that the volume equivalent diameter varied temporally from 70 to 110 nm during the period that high soot concentration is observed. One can also conclude that the optical length longer than 1 m in the dynamic range regarding this method is preferable for measuring soot concentration at the level of $1\;mg/m^3$.

Evaluation of Drainage by Near Infrared Spectroscopy

  • Takamura, Hitoshi;Miyamoto, Hiroko;Mori, Yoshikuni;Matoba, Teruyoshi
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1271-1271
    • /
    • 2001
  • Water pollutants in drainage mainly consist of organic compounds. Hence, total organic carbon (TOC), chemical oxygen demand (COD), and biochemical oxygen demand (BOD) were generally used as the indices of pollution. However, these values are determined by special analyzer (TOC), titration method (COD), or microbe culture (BOD). Therefore, the development of simple and easy methods for the determination of water pollution is required. The authors reported the evaluation of water pollution by near infrared (NIR) spectroscopy in a model system with food components (Takamura et al. (200) Near Infrared Spectroscopy: Proceedings of 9th International Conference, pp. 503-507). In this study, the relationship between NIR spectra and drainage was investigated in order to develop a method for evaluation of drainage by NIR. Drainage was obtained in Nara Purification Center. The ranges of TOC, COD, and BOD were 0-130, 0-100 and 0-200, respectively. NIR transmittance spectra were recorded on NIR Systems Model 6250 Research Composition Analyzer in the wavelength range of 680-1235 and 1100-2500 nm with a quartz cell (light path: 0.5, 1, 2, 4 and 10mm) at 10-40. Statistical analysis was performed using NSAS program. A partial least squares (PLS) regression analysis was used for calibration. As the result, a good correlation between the raw NIR spectra and OC was obtained in the calibration. The best light path was 10 and 0.5mm in the wavelength range of 680-1235 and 110-2500nm, respectively. In the calibration, correlation coefficients(R) were 096-0.97 in the both range. In the prediction, however, a good correlation (R=0.89-0.96) was obtained only in the range of 6801235 nm, Similar results were obtained in the cases of COD and BOD. These results suggest the possibility that NIR spectroscopy can be used to evaluate drainage.

  • PDF