• Title/Summary/Keyword: Transmit Power Control

Search Result 250, Processing Time 0.021 seconds

A Transmit Power Control based on Fading Channel Prediction for High-speed Mobile Communication Systems (고속 이동 통신 시스템을 위한 페이딩 예측기반 송신 전력 제어)

  • Hwang, In-Kwan;Lee, Sang-Kook;Ryu, In-Bum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1A
    • /
    • pp.27-33
    • /
    • 2009
  • This paper proposes transmit power control techniques with fading channel prediction scheme based on recurrent neural network for high-speed mobile communication systems. The operation result of recurrent neural network which is derived interpretively solves complexity problems of neural network circuit, and channel gain of multiple transmit antenna is derived with maximum ratio combining(MRC) by using the operation result, and this channel gain control transmit power of each antenna. simulation results show that proposed method has a outstanding performance compared to method that is not to be controlled power based on channel prediction. Most of legacy studies are for robust receive technique of fading signals or channel prediction of fading signals limited low-speed mobility, but in open loop Power control, proposed channel prediction method decrease system complexity with removal of fading effect in transmitter.

A Study on the Uplink SDMA Systems: User Scheduling, Transmit Power Control, and Receive Beamforming (상향링크 공간 분할 다중 접속 시스템에서 사용자 스케쥴링, 송신 전력 제어, 수신 빔포밍에 관하여)

  • Cho, Moon-Je;Ban, Tae-Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.289-294
    • /
    • 2014
  • In this paper, we investigate the user scheduling, transmit beamforming, and receive beamforming of uplink space division multiple access (SDMA) systems where multiple users are allowed to transmit their signal to a base station (BS) using the same frequency band simultaneously. The BS performs a receive beamforming using the predetermined pseudo-random pattern and select users with a specific criterion. Especially, in this paper, we propose the threshold-based transmit power control, in which a user decrease its transmit power according if its generating interference to other users's signal is larger than a predetermined threshold. Assuming that the TDD system is used, the channel state information (CSI) can be obtained at each user from pilot signals from the BS. Simulation results show that the proposed technique significantly outperforms the existing user scheduling algorithms.

Power Control with Limited Information in Distributed ARQ Retransmission Schem (분산 재전송 시스템에서 제한된 정보를 이용한 전력제어 성능 분석)

  • Kim, Haesoo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1849-1855
    • /
    • 2017
  • The main purpose of cooperative communications is improvement of communication quality and efficient use of transmission power. In this paper, a cooperative retransmission method is proposed, where neighbor nodes that receive messages correctly between transmit and receive nodes will participate in retransmission of the erroneous packet of the direct link. When the proposed retransmission method is used, the performance of the PER can be greatly improved. In case that the limited information is included in the NACK message, the transmit power of the retransmission packet can be reduced using the proper power control method.

Joint Power-Saving and Routing Algorithm for Lifetime Maximization in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 생존시간 최대화를 위한 전력절감과 라우팅 결합 알고리즘)

  • Choi, Hyun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2826-2834
    • /
    • 2013
  • In mobile ad hoc networks (MANET), power-saving technology of mobile nodes is divided into transmit power control (TPC), power-saving mode (PSM), and routing. TPC and PSM are operated in physical layer but the routing is managed in network layer, so the design of a joint algorithm is needed to provide better performance. Therefore, in this paper, we propose a joint power-saving and routing algorithm for maximizing the network lifetime while satisfying the end-to-end data rate in ad hoc networks. The proposed algorithm first applies the TPC or PSM to reduce the power consumption of mobile nodes and then performs the routing by considering the decided node lifetime in order to maximize the path lifetime. Simulation results show that the proposed algorithm maximize the lifetime while satisfying the required rate according to the number of mobile nodes and the level of interference.

Energy-Connectivity Tradeoff through Topology Control in Wireless Ad Hoc Networks

  • Xu, Mengmeng;Yang, Qinghai;Kwak, Kyung Sup
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.30-40
    • /
    • 2017
  • In this study, we investigate topology control as a means of obtaining the best possible compromise between the conflicting requirements of reducing energy consumption and improving network connectivity. A topology design algorithm capable of producing network topologies that minimize energy consumption under a minimum-connectivity constraint is presented. To this end, we define a new topology metric, called connectivity efficiency, which is a function of both algebraic connectivity and the transmit power level. Based on this metric, links that require a high transmit power but only contribute to a small fraction of the network connectivity are chosen to be removed. A connectivity-efficiency-based topology control (CETC) algorithm then assigns a transmit power level to each node. The network topology derived by the proposed CETC heuristic algorithm is shown to attain a better tradeoff between energy consumption and network connectivity than existing algorithms. Simulation results demonstrate the efficiency of the CECT algorithm.

The Characteristic analysis of the IPT system used for PRT(Personal Rapid Transmit) (소형궤도차량 유도전력급전 계통 특성해석)

  • Lee, B.S.;Kim, Do-Won;Han, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.218-220
    • /
    • 2005
  • This paper shows the analysis of the inductive power transfer system in conjunction with series resonant converter operating variable high frequency. Of particular interest is the sensitivity of the complete system to variations in operational frequency and parameters. In inductive power transfer system, electrical power is transferred from a prima교 winding in the form of a coil or track, to one or more isolated pick-up coils that may relative to the primary. The ability to transmit power without contact enables high reliability and easy maintenance that allows inductive power transfer system to be implemented in hostile environments. This technology has found application in many fields such as electric vehicles, PRT(Personal Rapid Transit) etc. The coupling between the primary and secondary is then presented to include the effects of parameter and operational frequency variation.

  • PDF

Performance Analysis of Uplink Transmit Power Control during Soft Handoff (소프트 핸드오프 상황에서 상향링크 송신 전력 제어 성능 분석)

  • Kim, Jin;Park, Su-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8A
    • /
    • pp.632-638
    • /
    • 2012
  • In a mobile communication system, we analyze the performance of uplink transmit power control mechanisms for various environments when a mobile station is during soft handoff. The quality of data frames at the receiver side can be better at a base station controller (BSC) than at its base stations (BSs) if the BSC combines selectively the data frames transmitted from the BSs. And, in order to achieve the target frame error rate (FER), the outer loop power control should be done at the BSC instead of at the BSs. It can save the energy consumption of a mobile station during the soft handoff.

On Mobility-Supporting Transmit Beamforming in MISO FDD Wireless Systems

  • Lee, Woo-Kwon;Sepko, Brian J.
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.308-315
    • /
    • 2008
  • When operating in frequency-division duplex (FDD) mode, transmit beamforming in multiple-input single-output (MISO) wireless communication systems typically requires accurate knowledge of downlink channel state information (CSI) at the transmitter. In practical FDD systems, obtaining such downlink CSI at the transmitter is challenging, if not impractical. To circumvent such challenge and support user mobility, we present a new method for transmit beamforming based on simple beam-control commands (BCCs) in MISO FDD mobile systems. We then numerically evaluate the effects of BCC errors in terms of transmit power efficiency, system capacity, and outage probability.

Subcarrier Block Power Control for Adaptive Downlink OFDM with Frequency Spreading and Equalization (주파수 확산과 등화기법을 적용한 적응 OFDM에 대한 부 반송파 블록 전력 제어)

  • Kim Nam-So;Cho Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.214-220
    • /
    • 2006
  • In this paper, we propose the transmit power controlled adaptive modulated OFDM with frequency symbol spreading and equalization(TPC-AMS/FSS-OFDM) system. In the transmitter of the TPC-AMS/FSS-OFDM, each SP transformed signal is spread by orthogonal spreading codes and combined, so the detected signals obtain the same SINR(signal interference to noise ration) for each frequency symbol spreading block. In this case, we can assign the same modulation level and transmit power for each frequency symbol spreading block. Thus, the proposed system provides the increased throughput performance with reducing the total transmit power, FBI and MLI.

Spectrum Reuse Schemes with Power Control for Device-to-Device Communication in LTE-Advanced Cellular Network

  • Chhorn, Sok;Yoon, Seok-Ho;Seo, Si-O;Kim, Seung-Yeon;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4819-4834
    • /
    • 2015
  • The spectral efficiency of cellular networks can be improved when proximate users engage in device-to-device (D2D) communications to communicate directly without going through a base station. However, D2D communications that are not properly designed may generate interference with existing cellular networks. In this paper, we study resource allocation and power control to minimize the probability of an outage and maximize the overall network throughput. We investigate three power control-based schemes: the Partial Co-channel based Overlap Resource Power Control (PC.OVER), Fractional Frequency Reuse based Overlap Resource Power Control (FFR.OVER) and Fractional Frequency Reuse based Adaptive Power Control (FFR.APC) and also compare their performance. In PC.OVER, a certain portion of the total bandwidth is dedicated to the D2D. The FFR.OVER and FFR.APC schemes combine the FFR techniques and the power control mechanism. In FFR, the entire frequency band is partitioned into two parts, including a central and edge sub-bands. Macrocell users (mUEs) transmit using uniform power in the inner and outer regions of the cell, and in all three schemes, the D2D receivers (D2DRs) transmit with low power when more than one D2DRs share a resource block (RB) with the macrocells. For PC.OVER and FFR.OVER, the power of the D2DRs is reduced to its minimum, and for the FFR.APC scheme, the transmission power of the D2DRs is iteratively adjusted to satisfy the signal to interference ratio (SIR) threshold. The three schemes exhibit a significant improvement in the overall system capacity as well as in the probability of a user outage when compared to a conventional scheme.