• Title/Summary/Keyword: Transmission dose

Search Result 219, Processing Time 0.034 seconds

Transmission Dose Estimation Algorithm for in vivo Dosimetry

  • Yun, Hyong-Geun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Woo, Hong-Gyun;Shin, Kyo-Chul;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.1
    • /
    • pp.59-63
    • /
    • 2003
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Materials and Methods : Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 cc Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed for estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. Results : The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ${\pm}0.5%$. For elongated radiation field, the errors were limited to ${\pm}1.0%$. Conclusion : The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.

Dosimetric Characteristics of Flexible Radiochromic Film Based on LiPCDA

  • Jung, Seongmoon;Cho, Jin Dong;Kim, Jung-in;Park, Jong Min;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.179-184
    • /
    • 2021
  • This study aimed to determine the optimal thickness of the active layer and scan mode for a flexible radiochromic film (F-RCF) based on the active lithium salt of pentacosa-10,12-diynoic acid (LiPCDA). F-RCFs of 90, 120, 140, and 170-㎛ thickness were fabricated using LiPCDA. Several pieces of the F-RCFs were exposed to doses ranging from 0 to 3 Gy. Transmission and reflection modes were used to scan the irradiated F-RCFs. Their dose-response curves were obtained using a second-order polynomial equation. Their sensitivity was evaluated for both scanning modes, and the uniformity of the batch was also examined. For both the transmission and reflection modes, the sensitivity increased as the film thickness increased. For the reflection mode, the dose response increased dramatically under 1 Gy. The value of the net optical density varied rapidly as the thickness of the film increased. However, the dose-response curves showed a supralinear-curve relationship at doses greater than 2 Gy. The sensitivity of the reflection scan at doses greater than 2 Gy was higher than that of the reflection scan within 0-2 Gy. The sensitivity steadily decreased with increasing doses, and the sensitivity of the two modes was within 0.1 to 0.2 at 2 Gy and was saturated beyond that. For the transmission scan, the sensitivity was approximately 0.2 at 3 Gy. For the intra-batch test result, the maximum net optical density difference of the intra-batch was 5.5% at 2 Gy and 7.4% at 0.2 Gy in the transmission and reflection scans, respectively. In the low-dose range, film thickness of more than 120-㎛ was proper in the transmission mode. In contrast, the transmission mode showed a better result compared to the reflection mode. Therefore, the proper scan mode should be selected according to the dose range.

Photodynamic Inactivation of Staphylococcus Aureus Based on Dose of Laser Transmission (레이저 투과 선량에 따른 황색포도상구균의 광역학적 비활성화)

  • Koo, Bon-Yeoul;Kim, Ji-Won
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.165-170
    • /
    • 2022
  • Staphylococcus aureus is a major pathogen that causes clinical infections in humans and can also cause massively colonized in lesion skin, particularly in atopic dermatitis patients. This study investigated the effects of photodynamic inactivation with radachlorin and diode laser irradiation on the viability of S. aureus in vitro and assessed the effects of the dose of laser transmission. In the PDI group, 5 𝜇L of S. aureus suspension and 5 𝜇L of radachlorin were inoculated in a 55 mm petri dish (63.6 cm2). The samples were placed in a 37° incubator for 30 min and then irradiated with light (660 nm diode laser). After laser irradiation, the cells were stored for 24 h at 37° in an incubator with 5% CO2, and the number of colonies was counted. All CFU/mL of S. aureus were reduced by diode laser in the presence of radachlorin, with a killing rate of 87.9% at an energy dose of 9 J/cm2. This study contribute to treat colonized with S. aureus in atopic dermatitis patients and wound infections by providing information on the optimal dose of laser transmission using PDI to eliminate S. aureus.

Feasibility Test of Flat-Type Faraday Cup for Ultrahigh-Dose-Rate Transmission Proton Beam Therapy

  • Sang-il Pak;Sungkoo Cho;Seohyeon An;Seonghoon Jeong;Dongho Shin;Youngkyung Lim;Jong Hwi Jeong;Haksoo Kim;Se Byeong Lee
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.108-113
    • /
    • 2022
  • Purpose: Proton therapy has been used for optimal cancer treatment by adapting its Bragg-peak characteristics. Recently, a tissue-sparing effect was introduced in ultrahigh-dose-rate (FLASH) radiation; the high-energy transmission proton beam is considered in proton FLASH therapy. In measuring high-energy/ultrahigh-dose-rate proton beam, Faraday Cup is considered as a dose-rate-independent measurement device, which has been widely studied. In this paper, the feasibility of the simply designed Faraday Cup (Poor Man's Faraday Cup, PMFC) for transmission proton FLASH therapy is investigated. Methods: In general, Faraday cups were used in the measurement of charged particles. The simply designed Faraday Cup and Advanced Markus ion chamber were used for high-energy proton beam measurement in this study. Results: The PMFC shows an acceptable performance, including accuracy in general dosimetric tests. The PMFC has a linear response to the dose and dose rate. The proton fluence was decreased with the increase of depth until the depth was near the proton beam range. Regarding secondary particles backscatter from PMFC, the effect was negligible. Conclusions: In this study, we performed an experiment to investigate the feasibility of PMFC for measuring high-energy proton beams. The PMFC can be used as a beam stopper and secondary monitoring system for transmission proton beam FLASH therapy.

Tissue Inhomogeneity Correction in Clinical Application of Transmission Dosimetry to Head and Neck Cancer Radiation Treatment (두경부 방사선 치료 환자에서 투과선량 알고리즘의 임상 적용시 불균질 조직 보정에 관한 연구)

  • Kim Suzy;Ha Sung Whan;Wu Hong Gyun;Huh Soon Nyung
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.155-163
    • /
    • 2004
  • Purpose : To confirm the reproducibility of in vivo transmission dosimetry system and the accuracy of the a1gorithms for the estimation of transmission dose in head and neck radiation therapy patients. Materials and Methods : From September 5 to 18, 2001, transmission dose measurements were peformed when radiotherapy was given to brain or head and neck cancer patients. The data of 35 patients who were treated more than three times and whose central axis of the beam was not blocked were analyzed in this study. To confirm the reproducibility of this system, transmission dose was measured before dally treatment and then repetitively every hour during the treatment time, with a field size of 10$\times$10 cm$^{2}$ and a delivery of 100 MU. The accuracy of the transmission dose calculation algorithms was confirmed by comparing estimated dose with measured dose. To accurately estimate transmission dose, tissue inhomogeneity correction was done. Results : The measurement variations during a day were within $\pm$0.5$\%$ and the dally variations in the checked period were within $\pm$ 1.0$\%$, which were acceptable for system reproducibility. The mean errors between estimated and measured doses were within $\pm$5.0$\%$ in Patients treated to the brain, $\pm$2.5$\%$ in head, and $\pm$ 5.0%$\%$in neck. Conclusion : The results of this study confirmed the reproducibility of our system and its usefulness and accuracy for dally treatment. We also found that tissue inhomogeneity correction was necessary for the accurate estimation of transmission dose in patients treated to the head and neck.

Appropriate Time for Primaquine Treatment to Reduce Plasmodium falciparum Transmission in Hypoendemic Areas

  • Wilairatana, Polrat;Krudsood, Srivicha;Tangpukdee, Noppadon
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.2
    • /
    • pp.179-182
    • /
    • 2010
  • Artemesinin-combination therapies (ACT) for falciparum malaria reduce gametocyte carriage, and therefore reduce transmission. Artemisinin derivatives will act against only young gametocytes whereas primaquine acts on mature gametocytes which are present usually in the circulation at the time when the patient presents for treatment. Both artemisinin derivatives and primaquine have short half-lives, less than 1 hr and 7 hr, respectively. Therefore, asexual parasites or young gametocytes remain after completed ACT. A single dose of primaquine (0.50-0.75 mg base/kg) at the end of ACT can kill only mature gametocytes but cannot kill young gametocytes (if present). Remaining asexual forms after completion of ACT course, e.g., artesunate-mefloquine for 3 days, may develop to mature gametocytes 7-15 days later. Thus, an additional dose of primaquine (0.50-0.75 mg base/kg) given 2 weeks after ACT completion may be beneficial for killing remaining mature gametocytes and contribute to more interruption of Plasmodium falciparum transmission than giving only 1 single dose of primaquine just after completing ACT.

VLC Wireless Data Transmission of High Luminance LED Irradiated by the High Dose-Rate Gamma-Ray (고 선량 감마선 조사에 따른 고휘도 LED의 가시광 무선 데이터 전송)

  • Cho, Jai-Wan;Choi, Young-Soo;Hong, Seok-Boong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.996-1000
    • /
    • 2010
  • In order to apply VLC (visible light communication) in harsh environment of nuclear power plant in-containment building, the high luminance LEDs, which are key components of the VLC system, have been gamma irradiated at the dose rate of 4 kGy/h during 72 hours up to a total dose of 288 kGy. The radiation induced coloration effect in the high luminance LED bulb made of acryl or plastic material was observed. In the VLC wireless data transmission experiment using the high luminance LEDs irradiated by high dose rate gamma-ray, the radiation induced coloration effect of the high luminance LED bulb extended the communication distance compared to non-irradiated LEDs.

Development of software for real-time evaluation of tumor dose from transmission dose (실시간 투과선량 측정 소프트웨어의 개발)

  • Youn, J.W.;Lee, H.K.;Ha, S.H.;Huh, S.Y.;Choi, B.Y.;Suh, T.S.;Shinn, K.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.319-320
    • /
    • 1998
  • We have developed algorithm for calculating tumor dose from transmission dose in radiation therapy. Using data acquisition card and LabVIEW programming language, we acquired the signal from 9 ion chambers, processed and displayed it in real time. And we also developed GUI(Graphic User Interface) for system operation.

  • PDF

Analysis of dosimetric leaf gap variation on dose rate variation for dynamic IMRT (동적 세기조절방사선 치료 시 선량률 변화에 따른 선량학적엽간격 변화 분석)

  • Yang, Myung Sic;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Lee, Sun Young;Cha, Seok Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • To evaluate the position accuracy of the MLC. This study analyzed the variations of the dosimetric leaf gap(DLG) and MLC transmission factor to reflect the location of the MLC leaves according to the dose rate variation for dynamic IMRT. We used the 6 MV and 10 MV X-ray beams from linear accelerator with a Millennium 120 MLC system. We measured the variation of DLG and MLC transmission factor at depth of 10 cm for the water phantom by varying the dose rate to 200, 300, 400, 500 and 600 MU/min using the CC13 and FC-65G chambers. For 6 MV X-ray beam, a result of measuring based on a dose rate 400 MU/min by varying the dose rate to 200, 300, 400, 500 and 600 MU/min of the difference rate was respectively -2.59, -1.89, 0.00, -0.58, -2.89%. For 10 MV X-ray beam, the difference rate was respectively ?2.52, -1.69, 0.00, +1.28, -1.98%. The difference rate of MLC transmission factor was in the range of about ${\pm}1%$ of the measured values at the two types of energy and all of the dose rates. This study evaluated the variation of DLG and MLC transmission factor for the dose rate variation for dynamic IMRT. The difference of the MLC transmission factor according to the dose rate variation is negligible, but, the difference of the DLG was found to be large. Therefore, when randomly changing the dose rate dynamic IMRT, it may significantly affect the dose delivered to the tumor. Unless you change the dose rate during dynamic IMRT, it is thought that is to be the more accurate radiation therapy.

  • PDF

Transmission Dose Estimation Algorithm for in vivo Dosimertry (투과선량을 이용한 생체내 (in vivo) 선량측정을 위한 알고리즘)

  • Yun, Hyong-Geun;Chie, Eui-Kyu;Huh, Soon-Nyung;Lee, Hyoung-Koo;Woo, Hong-Gyun;Shin, Kyo-Chul;Kim, Si-Yong;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.147-154
    • /
    • 2002
  • Purpose : Measurement of transmission dose is useful for in vivo dosimetry of QA purpose. The objective of this study is to develope an algorithm for estimation of tumor dose using measured transmission dose for open radiation field. Materials and Methods : Transmission dose was measured with various field size (FS), phantom thickness (Tp), and phantom chamber distance (PCD) with a acrylic phantom for 6 MV and 10 MV X-ray. Source to chamber distance (SCD) was set to 150 cm. Measurement was conducted with a 0.6 co Farmer type ion chamber. Using measured data and regression analysis, an algorithm was developed lot estimation of expected reading of transmission dose. Accuracy of the algorithm was tested with flat solid phantom with various settings. Results : The algorithm consisted of quadratic function of log(A/P) (where A/P is area-perimeter ratio) and tertiary function of PCD. The algorithm could estimate dose with very high accuracy for open square field, with errors within ${\pm}0.5%$. For elongated radiation field, the errors were limited to ${\pm}1.0%$. Conclusion : The developed algorithm can accurately estimate the transmission dose in open radiation fields with various treatment settings.