• 제목/요약/키워드: Transmission coefficient

검색결과 717건 처리시간 0.029초

원형 파일 방파제에 의한 반사율과 투과율 (Reflection and Transmission Coefficients by a Circular Pile Breakwater)

  • 조일형;고혁준
    • 한국해안해양공학회지
    • /
    • 제19권1호
    • /
    • pp.38-44
    • /
    • 2007
  • Bennet 등(1992)이 제안한 수학적 모델을 사용하여 원형 파일 방파제에 의한 반사율과 투과율을 살펴보았다. 파가 파일 방파제를 통과하면서 갑작스런 단면형상의 변화로 박리현상이 발생하며 이로 인하여 파 에너지의 일부분이 소멸된다. 따라서 수학적 모델의 신뢰성을 높이기 위해서는 에너지 손실계수를 정확히 산정하는 것이 중요하다. 본 연구에서는 FLUENT 상용코드를 사용하여 2차원 난류유동을 해석하고 파일 방파제 전후의 압력차로부터 에너지 손실계수를 구하였다. 에너지 손실계수는 공극률의 함수이며, 둘 사이의 관계식을 제안하였다. 손실계수 산정식의 타당성을 검증하기 위하여 수리모형실험결과와 비교하였다. 4가지 공극률에 대하여 반사율과 투과율을 비교한 결과 해석결과와 모형실험결과는 잘 일치하고 있음을 확인하였다.

동일 평면상에서 연성된 직교이방성 평판의 진동파워흐름해석 (Vibration Power Flow Analysis of Coupled Co-planar Orthotropic Plates)

  • 송지훈;박도현;홍석윤;길현권
    • 한국소음진동공학회논문집
    • /
    • 제20권9호
    • /
    • pp.856-862
    • /
    • 2010
  • In this paper, the power flow analysis(PFA) method was developed to predict the vibrational responses of coupled co-planar orthotropic plates in frequencies ranging from medium to high. To cover the power transmission and reflection at the joint of the orthotropic plates, the wave transmission approach is applied with the assumption that all the incident waves are normal to the joint. Through numerical analyses, the power flow energy density and intensity fields of coupled co-planar orthotropic plates were compared with those of classical modal solutions by changing the frequency and internal loss factor, and they show good agreement in terms of the global decay and the attenuation patterns of the energy density.

유한요소법에 의한 흡음재 음향특성 연구 및 검증 (Finite Element analysis of Acoustic Behavior of Absorbent Materials with experimental Verification)

  • 정환익;김관주;박진규;김상헌
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.874-878
    • /
    • 2003
  • Acoustic materials are used for the purpose of absorbing noise and reducing transmission of sound into the receiving room. The purpose of this research is to predict the performance of absorbent materials with respect to absorbing behavior and transmission loss as possible as accurately. The performance of the absorbent materials are carried out systematically as follows: The Biot parameter are measured, first. Then using above parameters as input, LMS's SYSNOISE and VIOLINS programs are used to predict absorption coefficient and transmission loss values, which magnitudes are compared with experimental results. As an sample acoustic material, SK SKY VIVA and PET are selected.

  • PDF

갱웨이의 음향투과손실치가 터널주행중 전동차의 실내소음에 미치는 영향 (Study on the Effect of the Sound Transmission Coefficient of a Gangway on the Train Running in Tunnel)

  • 우관제
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1656-1660
    • /
    • 2008
  • Internal noise level of a train running in tunnel is influenced by sound transmission coefficients of floor, side door, window and gangway as well as by the sound power levels of major noise sources. The structure of a gangway should be strong enough for the safety of passengers while it should be flexible enough for the movement of a train in curves. Due to this the sound transmission coefficients of gangways are relatively low compared to those of carbody structure. The effect of the sound transmission coefficient of the gangway is studied in this paper in regards to the existence of end doors.

  • PDF

장주기파에 효율적인 부유식방파제 단면 형상에 대한 연구 (A Study on the Long-Wave Effective Cross Section of Floating Breakwater)

  • 안용호;류황진;김도영
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.133-138
    • /
    • 2000
  • In this paper some shapes of the FBW cross sections were examined to improve the performance of FBW for the long wave. Trapezoidal section and prominence section were examined. Linear potential theory is used and the boundary element method is use for numerical computation. Proper choice of the pontoon geometry may improve the transmission coefficient in the long wave range for a given wave period.

  • PDF

연성된 쉘 구조물의 진동 파워흐름해석 (Vibration Power Flow Analysis of Coupled Shell Structures)

  • Kim, Il-Hwan;Hong, Suk-Yoon;Park, Do-Hyun;Kil, Hyun-Gwon
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.352.2-352
    • /
    • 2002
  • In this paper, Power Flow Analysis (PFA) method has been applied to the prediction of vibration energy density and intensity of coupled shell structures in the medium-to-high frequency ranges. To consider the wave transformation at joint between shell elements, power transmission and reflection coefficients are investigated for various joint angles, and here Donnell-Mushtari thin shell theory has been used. (omitted)

  • PDF

흡연집진기 내 스트레이너 및 카본필터 압력투과 해석 (Dust collector strainer and carbon filter pressure permeation analysis)

  • 이치우
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.5-10
    • /
    • 2015
  • Dust collector is one of the most widely used equipment among the method of separating particles, it filters exhaust gas having various kinds of dusts through several filters installed on parallel. This research investigated the moving characteristic of Honeycomb-type carbon filter in pressure drop of smoking collector's ventilation system. It also compared pressure transmission coefficient through pressure drop according to flow velocity change.

최적 열전달계수를 이용한 단열기준산출

  • 이진원;이종원
    • 대한설비공학회지:설비저널
    • /
    • 제8권2호
    • /
    • pp.95-100
    • /
    • 1979
  • Optlmum overall heat transmission coefficient for residential buildings is calculated as a function of building parameter, area/volume. Equivalent heat transmission coefficient and equivalence factor are introduced and optimized with respect to annual cost including fuel cost , insulation cost and equipment cost Comparison with recent standard of West Germany shows similarity of the result.

  • PDF

Reflection and Transmission of Acoustic Waves Across Contact Interfaces

  • Kim, Noh-Yu;Jhang, Kyung-Young;Lee, Tae-Hoon;Yang, Seung-Yong;Chang, Young-Chul
    • 비파괴검사학회지
    • /
    • 제28권3호
    • /
    • pp.292-301
    • /
    • 2008
  • A linearized model for hysteretic acoustic nonlinearity of imperfectly joined interface is proposed and analyzed by using Coulomb damping to investigate the characteristics of the reflection and transmission coefficients for harmonic waves at the contact interface. Closed crack is modeled as non welded interface that has nonlinear discontinuity condition in displacement across its boundary. Based on the hysteretic contact stiffness of the contact interface, the reflected and transmitted waves are determined by deriving the tractions on both sides of the interface in terms of the discontinuous displacements across the interface. It is found that the amplitudes of the reflected and transmitted waves are dependent on the frequency and the hysteretic stiffness. As the frequency of the incident wave increases, the higher reflection and lower transmission are obtained. It also shows that the hysteresis of the interface increases the reflection coefficient, but reduces the transmission coefficient. A fatigue crack is also made in aluminum specimen to demonstrate these characteristics of the reflection and transmission of contact interfaces.

Prediction of Wave Transmission Characteristics of Low Crested Structures Using Artificial Neural Network

  • Kim, Taeyoon;Lee, Woo-Dong;Kwon, Yongju;Kim, Jongyeong;Kang, Byeonggug;Kwon, Soonchul
    • 한국해양공학회지
    • /
    • 제36권5호
    • /
    • pp.313-325
    • /
    • 2022
  • Recently around the world, coastal erosion is paying attention as a social issue. Various constructions using low-crested and submerged structures are being performed to deal with the problems. In addition, a prediction study was researched using machine learning techniques to determine the wave attenuation characteristics of low crested structure to develop prediction matrix for wave attenuation coefficient prediction matrix consisting of weights and biases for ease access of engineers. In this study, a deep neural network model was constructed to predict the wave height transmission rate of low crested structures using Tensor flow, an open source platform. The neural network model shows a reliable prediction performance and is expected to be applied to a wide range of practical application in the field of coastal engineering. As a result of predicting the wave height transmission coefficient of the low crested structure depends on various input variable combinations, the combination of 5 condition showed relatively high accuracy with a small number of input variables defined as 0.961. In terms of the time cost of the model, it is considered that the method using the combination 5 conditions can be a good alternative. As a result of predicting the wave transmission rate of the trained deep neural network model, MSE was 1.3×10-3, I was 0.995, SI was 0.078, and I was 0.979, which have very good prediction accuracy. It is judged that the proposed model can be used as a design tool by engineers and scientists to predict the wave transmission coefficient behind the low crested structure.