• Title/Summary/Keyword: Transmission X-ray

Search Result 1,287, Processing Time 0.025 seconds

Determination of X-ray and gamma-ray shielding capabilities of recycled glass derived from deteriorated silica gel

  • P. Sopapan;O. Jaiboon;R. Laopaiboon;C. Yenchai;C. Sriwunkum;S. Issarapanacheewin;T. Akharawutchayanon;K. Yubonmhat
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3441-3449
    • /
    • 2023
  • We determined the radiation shielding properties for 10CaO-xPbO-(90-x) deteriorated silica gel (DSG) glass system (x = 20, 25, 30, 35, 40, and 45 mol.%). The mass attenuation coefficient (MAC) has been estimated at photon energies of 74.23, 97.12, 122, 662, 1173, and 1332 keV using a narrow beam X-ray attenuation and transmission experiment, the XCOM program, and a PHITS simulation. The obtained MAC values were applied to estimate the half value layer (HVL), mean free path (MFP), effective atomic number, and effective electron density. Results show that the MAC value of the studied glasses ranges between 0.0549 and 1.4415 cm2/g, increases with the amount of PbO, and decreases with increasing photon energy. The HVL and MFP values decrease with increasing PbO content and increase with increasing photon energy. The recycled glass, with the addition of PbO content (20-45 mol.%), exhibited excellent radiation shielding capabilities compared to standard barite and ferrite concretes and some glass systems. Moreover, the experimental radiation shielding parameters agree with the XCOM and PHITS values. This study suggests that this new waste-recycled glass is an effective and cost-saving candidate for X-ray and gamma-ray shielding applications.

The MTF Measurement of the Conventional X-ray System by using the Computed Radiography (CR을 이용한 일반촬영장치의 MTF 측정)

  • Kim, Chang-Bok
    • Journal of radiological science and technology
    • /
    • v.28 no.2
    • /
    • pp.111-115
    • /
    • 2005
  • The quality of image from the system that creates medical images by using X-ray depends on the various different reasons such as the X-ray generator, the subject and the image transmission medium. In other words, thereare various factors existing that can influence on the quality of image from the moment when the X-ray is generated and until the final image is created. Therefore, the operator who creates images at the clinical site should make continuous evaluation and observation from the final image. There are various methods of evaluating the medical images, but it is assumed that the MTF measurement method can be suitable for measuring actual or effective resolution. So in this study, the MTF measurement method by using X-ray film has been avoided and the MTF features according to the deterioration of the X-ray system have been measured by using the software (the program used Borland C++ builder software and LEAD tools software) that can measure the MTF of the digital medical images. As the result of this measurement, it has been found out through the MTF graph that the resolution and sharpness from the old x-ray generator with a many years of using and many numbers of times of using were deteriorated for the quality of image comparing to those from the new system. Also a simple and easy measurement method for the MTF from the digital medical images can be obtained in this study.

  • PDF

Dielectric properties and microstructures of (CaxSr1-x)ZrO3 ceramics

  • Li, Yu-De;Chen, Jian-Ming;Lee, Ying-Chieh
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.461-466
    • /
    • 2018
  • The effects of Ca/Sr ratio and the sintering temperature on the properties of $(Ca_xSr_{(1-x)})ZrO_3$ (CSZ) ceramics were investigated in this study. CSZ ceramics were prepared using solid-state reaction process, which were sintered in air at temperatures ranging from $1350^{\circ}C$ to $1450^{\circ}C$. Their structures were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The change in Ca/Sr ratio significantly affected the crystalline phase and the dielectric properties of the $(Ca_xSr_{(1-x)})ZrO_3$ ceramics. The secondary phase, $Ca_{0.15}Zr_{0.85}O_{1.85}$, was observed and increased correspondingly with the rising of sintering temperatures. In order to understand the effects of secondary phase on the dielectric properties of CSZ ceramics, the $Ca_{0.15}Zr_{0.85}O_{1.85}$ phase was prepared individually using solidstate method. The $Ca_{0.15}Zr_{0.85}O_{1.85}$ ceramics sintered at $1500^{\circ}C$ for 2 hours possessed a dielectric constant (${\varepsilon}_r$) of 21.7, a dielectric loss ($tan{\delta}$) of $49.510^{-4}$ and an Insulation Resistance (IR) of $2.1{\times}10^{10}{\Omega}$. The ($Ca_{0.7}Sr_{0.3})ZrO_3$ ceramics exhibited the best dielectric properties, with a permittivity of 29, a dielectric loss ($tan{\delta}$) of $2.7{\times}10^{-4}$, and an Insulation Resistance (IR) of $2.6{\times}10^{12}{\Omega}$.

Combined X-ray CT-SPECT System with a CZT Detector

  • Kwon, Soo-Il;Koji Iwata;Hasegawa, B-H
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.379-381
    • /
    • 2002
  • A single CdZnTe detector is tested for suitability in a prototype CT/ SPECT system designed to acquire both emission and transmission data. The detector has the size of 1${\times}$l-cm$^2$ with 4${\times}$4 1.5${\times}$l.5mm$^2$ pixellated anodes. Since the detector is smaller than imaged object, we translated it in an arc centered at the x-ray tube to image larger objects. Pulse counting electronics with very short shaping time (50 ns) are used to satisfy high photon rates in x-ray imaging, and response linearity up to 3${\times}$10$\^$5/ counts per second per detector element is achieved. The energy resolution of 122-keV gamma-ray is measured to be 14%. We have characterized the system performance by scanning a radiographic resolution phantom .and the Hoffman brain phantom. The spatial resolution of CT and SPECT are about 1 mm and 7 mm, respectively.

  • PDF

Impacts of Saudi Arabian fly ash on the structural, physical, and radiation shielding properties of clay bricks rich vermiculite mineral

  • Aljawhara H. Almuqrin;Abd Allh M. Abd El-Hamid;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2324-2331
    • /
    • 2024
  • The current study investigated Saudi Arabian oil fly ash impacts on Egyptian clay bricks' structural and radiation shielding properties. To produce the required bricks, crushed clay minerals from the Hafafit area were mixed with 0, 10, 20, 30, and 40 % wt.% Saudi Arabian oil fly ash and pressed at a pressure rate of 68.55 MPa. Identification of the minerals in the chosen clay was achieved via X-ray diffraction. Additionally, the material's morphology and chemical composition were determined through scanning electron microscope and energy-dispersive X-ray. The fabricated bricks' density was reduced by 36.3 % through increasing the concentration of fly ash from 0 to 40 wt%. Then, the fly ash addition's influence on the fabricated clay bricks' γ-ray shielding properties was investigated by Monte Carlo simulation, which found a reduction in the fabricated bricks' linear attenuation coefficient (LAC) by 41.2, 36.0, 33.8, and 33.8 % at the 0.059, 0.103, 0.662, and 1.252 MeV γ-ray energies, respectively. The LAC reduction caused an increase in the fabricated bricks' half-value thickness, transmission factor, and the equivalent thickness of the lead. Moreover, the thicker fabricated sample thicknesses were found to have high γ-ray shielding capacity and can thus be used in radiation shielding applications.

Quasi-monochromatic Parallel Radiography Achieved with a Polycapillary Plate

  • Sato, Eiichi;Komatsu, Makoto;Hayasi, Yasuomi;Tanaka, Etsuro;Mori, Hidezo;Kawai, Toshiaki;Ichimaru, Toshio;Takayama, Kazuyoshi;Ido, Hideaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.418-421
    • /
    • 2002
  • Fundamental study on quasi-monochromatic parallel radiography using a polycapillary plate and a plane-focus x-ray tube is described. The x-ray generator consists of a negative high-voltage power supply, a filament (hot cathode) power supply, and an x-ray tube. The negative high-voltage is applied to the cathode electrode, and the transmission type target (anode) is connected to the ground potential. The maximum voltage and current of the power supply were -100 kV (peak value) and 3.0 mA, respectively. In this experiment, the tube voltage was regulated from 20 to 25 kV, and the tube current was regulated by the filament temperature and ranged from 1.0 to 3.0 mA. The exposure time is controlled in order to obtain optimum film density, and the focal spot diameter was about 10 mm. The polycapillary plate is J5022-21 made by Hamamatsu Photonics Inc., and the outside and effective diameters are 87 and 77 mm, respectively. The thickness and the hole diameter of the polycapillary are 1.0 mm and 25 ${\mu}$m, respectively. The x-rays from the tube are formed into parallel beam by the polycapillary, and the radiogram is taken using an industrial x-ray film of Fuji IX 100 without using a screen. In the measurement of image resolution, we employed three brass spacers of 2, 30, and 60 mm in height. By the test chart, the resolution fell according to increases in the spacer height without using a polycapillary. In contrast, the resolution slightly fell with corresponding increases in the height by the polycapillary. In angiography, fine blood vessels of about 100 ${\mu}$m are clearly visible.

  • PDF

Fine Structure Effect of PdCo electrocatalyst for Oxygen Reduction Reaction Activity: Based on X-ray Absorption Spectroscopy Studies with Synchrotron Beam

  • Kim, Dae-Suk;Kim, Tae-Jun;Kim, Jun-Hyuk;Zeid, E. F. Abo;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 2010
  • In this study, we have demonstrated the fine structure effect of PdCo electrocatalyst on oxygen reduction reaction activity with different alloy composition and heat-treatment time. In order to identify the intrinsic factors for the electrocatalytic activity, various X-ray analyses were used, including inductively coupled plasma-atomic emission spectrometer, transmission electron microscopy, X-ray diffractometer, and X-ray Absorption Spectroscopy technique. In particular, extended X-ray absorption fine structure was employed to extract the structural parameters required for understanding the atomic distribution and alloying extent, and to identify the corresponding simulated structures by using FEFF8 code and IFEFFIT software. The electrocatalytic activity of PdCo alloy nanoparticles for the oxygen reduction reaction was evaluated by using rotating disk electrode technique and correlated to the change in structural parameters. We have found that Pd-rich surface was formed on the Co core with increasing heating time over 5 hours. Such core shell structure of PdCo/C showed that a superior oxygen reduction reaction activity than pure Pd/C or alloy phase of PdCo/C electrocatalysts, because the adsorption energy of adsorbates was apparently reduced by lowering the dband center of the Pd skin due to a combination of the compressive strain effect and ligand effect.

Computer Simulation for Development of Micro-Focus X-ray Generator (미소초점엑스선원 개발을 위한 전산모사)

  • Kim, Sung-Soo;Lee, Youn-Seoung;Kim, Do-Yun;Ko, Dong-Seob
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.403-408
    • /
    • 2011
  • To develop the MFX (Micro-Focus X-ray) tube, the trajectories of electrons emitted from the field emission cathode was simulated using SIMION program. Regardless of starting position of the electron in emitter, we found out the fact that there is the optimum extractor voltage Ve, which can focus the electron beam on one place. Extractor voltage Ve varies depending on the source voltage Vs, but the ratio of two voltages (Ve/Vs) is always constant, its value was 99.4%. When the ratio of two voltages (Ve/Vs) was 99.4%, the beam diameter in the cross-over point was $1.2{\mu}m$. Because the focal spot size in MFXG (Micro-Focus X-ray Generator) can not be less than the cross-over diameter within MFX tube, it is important to find out the conditions that can make a smaller beam diameter. Therefore, the above results is considered to be a very important ones in the development of the MFXG.

Annealing Effect on Magneto-transport Properties of Amorphous Ge1-xMnx Semiconductor Thin Films (비정질 Ge1-xMnx 박막의 자기수송특성에 미치는 열처리 효과)

  • Kim, Dong-Hwi;Lee, Byeong-Cheol;Lan Anh, Tran Thi;Ihm, Young-Eon;Kim, Do-Jin;Kim, Hyo-Jin;Yu, Sang-Soo;Baek, Kui-Jong;Kim, Chang-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.121-125
    • /
    • 2009
  • Amorphous $Ge_1$_$_xMn_x$ semiconductor thin films grown by low temperature vapor deposition were annealed at various temperatures from 400 to $700^{\circ}C$ for 3 minutes in high vaccum chamber. The electrical and magnetotransport properties of as-grown and annealed samples have been studied. X-ray diffraction patterns analysis revealed that the samples still maintain amorphous state after annealling at $500^{\circ}C$ for 3 minutes and they were crystallized when annealing temperature increase to $600^{\circ}C$. Temperature dependence of resistivity measurement implied that as-grown and annealed $Ge_1$_$_xMn_x$ films have semiconductor characteristics, the increase of resistivity with annealling temperature was obseved. The $700^{\circ}C$-annealed sample exhibited negative magnetoresistance (MR) at low temperatures and the MR ratio was ${\sim}$8.5% at 10 K. The asymmetry was present in all MR curves. The anomalous Hall Effect was also observed at 250 K.

PEALD TaNx 박막 내 질소 함량 확산 방지 특성에 미치는 영향

  • Mun, Dae-Yong;Han, Dong-Seok;Sin, Sae-Yeong;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.179-179
    • /
    • 2010
  • 다양한 분야에서 확산 방지막은 소자의 신뢰성 향상에 중요한 역할을 하고 있다. 최근 반도체에 적용되기 시작한 구리 배선 형성 공정에서도 실리콘이나 실리콘 산화막으로 구리가 확산하는 것을 방지하는 기술이 중요한 부분을 차지하고 있다. 기존 physical vapor deposition (PVD)법을 이용한 $TaN_x$ 확산 방지막 형성 기술이 성공적으로 적용되고 있으나 반도체의 최소선폭이 지속적으로 감소함에 따라 한계에 다다르고 있다. 20 nm 급과 그 이하의 구리 배선을 위해서는 5 nm 이하의 매우 얇고 높은 피복 단차율을 가진 확산 방지막 형성 기술이 요구된다. 또한, 요구 두께의 감소에 따라 더 우수한 확산 방지 특성이 요구된다. Atomic layer deposition (ALD)은 박막의 정교한 두께 조절이 가능하며 높은 종횡비를 가지는 구조에서도 균일한 박막 형성이 가능하다. 이번 연구에서는 다른 질소 함량을 가진 $TaN_x$ 박막을 Tertiarybutylimido tris (ethylamethlamino) tantalum (TBITEMAT) 전구체와 $H_2+N_2$ 반응성 플라즈마를 사용하여 plasma enhanced atomic layer deposition (PEALD) 법으로 형성하였다. 박막 내질소 함량에 따라 $TaN_x$의 상 (phase)과 미세구조 변화가 관찰되었고, 이러한 물성의 변화는 확산 방지 특성에 영향을 주었다. TEM (Transmission electron microscopy)과 SEM (scanning electron microscope), XPS (x-ray photoelectron spectroscopy)를 통해 $TaN_x$의 물성을 분석하였고, 300 도에서 700 도까지 열처리 후 XRD (x-ray deffraction)와 I-V test를 통해 확산 방지막의 열적 안정성이 평가되었다. PEALD를 통해 24 nm 크기의 trench 기판 위에 약 4 nm의 $TaN_x$ 확산 방지막이 매우 균일하게 형성할 수 있었으며 향후 구리 배선에 효과적으로 적용될 것으로 예상된다.

  • PDF