Dielectric properties and microstructures of (CaxSr1-x)ZrO3 ceramics

  • Li, Yu-De (Department of Materials Engineering National Pingtung University of Technology and Science) ;
  • Chen, Jian-Ming (Department of Materials Engineering National Pingtung University of Technology and Science) ;
  • Lee, Ying-Chieh (Department of Materials Engineering National Pingtung University of Technology and Science)
  • Published : 2018.12.01

Abstract

The effects of Ca/Sr ratio and the sintering temperature on the properties of $(Ca_xSr_{(1-x)})ZrO_3$ (CSZ) ceramics were investigated in this study. CSZ ceramics were prepared using solid-state reaction process, which were sintered in air at temperatures ranging from $1350^{\circ}C$ to $1450^{\circ}C$. Their structures were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The change in Ca/Sr ratio significantly affected the crystalline phase and the dielectric properties of the $(Ca_xSr_{(1-x)})ZrO_3$ ceramics. The secondary phase, $Ca_{0.15}Zr_{0.85}O_{1.85}$, was observed and increased correspondingly with the rising of sintering temperatures. In order to understand the effects of secondary phase on the dielectric properties of CSZ ceramics, the $Ca_{0.15}Zr_{0.85}O_{1.85}$ phase was prepared individually using solidstate method. The $Ca_{0.15}Zr_{0.85}O_{1.85}$ ceramics sintered at $1500^{\circ}C$ for 2 hours possessed a dielectric constant (${\varepsilon}_r$) of 21.7, a dielectric loss ($tan{\delta}$) of $49.510^{-4}$ and an Insulation Resistance (IR) of $2.1{\times}10^{10}{\Omega}$. The ($Ca_{0.7}Sr_{0.3})ZrO_3$ ceramics exhibited the best dielectric properties, with a permittivity of 29, a dielectric loss ($tan{\delta}$) of $2.7{\times}10^{-4}$, and an Insulation Resistance (IR) of $2.6{\times}10^{12}{\Omega}$.

Keywords

References

  1. M. Pollet, S. Marinel, Mater. Sci. Eng., A362 (2003) 167-173.
  2. K. Kiyoshi, Y. Shu, I. Yoshiaki, Solid State Ionics, 108 (1998) 355-359. https://doi.org/10.1016/S0167-2738(98)00063-0
  3. Y. Suzuki, P.E.D. Morgan, T. Ohji, J. Am. Ceram. Soc., 83 (2000) 2091-2096.
  4. S.K. Lim, H.Y. Lee, J.C. Kim, C. An, IEEE Microw. Guided Wave Lett., 9 (1999) 143-144. https://doi.org/10.1109/75.763241
  5. Woo-Jin Lee, Akihiro Wakahara, Bok-Hee Kim, Cerami. Intl., 31 (2005) 521-524. https://doi.org/10.1016/j.ceramint.2004.06.009
  6. Weina Chen, Huiqing Fan, Changbai Long, J Mater Sci, Mater. Electron, 25 (2014) 1505-1511.
  7. Cheng-Hsing Hsu, Chia-Hao Chang, Wen-Shiush Chen, Jenn-Sen Lin and Chun-Hung Lai, Mater. Sci. Forum, 787 (2014) 338-341. https://doi.org/10.4028/www.scientific.net/MSF.787.338
  8. H. Stetson, B. Schwartz, J. Am. Ceram. Soc., 44 (1961) 420-421. https://doi.org/10.1111/j.1151-2916.1961.tb15476.x
  9. Changhong Chen, Dexiu Huang, Weiguang Zhu, Xi Yao, Appl. Surf. Sci., 252 (2006) 7585-7589. https://doi.org/10.1016/j.apsusc.2005.10.014
  10. S. Hesaraki, S. Farhangdoust, K. Ahmadi, R. Nemati and M. Khorami, J. Austra. Ceram. Soc., 48 [2] (2012) 166-172.
  11. Yi-Seul Kim, Sung-Woo Choi, Jeong-Hwan Park, Eun Bok, Byung-Ki Kim and Seong-Hyeon Hong, J. Solid State Sci. & Tech., 2 [2] (2013)R3021-R3025. https://doi.org/10.1149/2.008302jss
  12. R.D. Shannon, Acta Crystallogr., A32 (1976) 751-767.
  13. Maik Lang, Fuxiang Zhang, Weixing Li, Daniel Severin, Markus Bender, Siegfried Klaumunzer, Christina Trautmann, Rodney C Ewing, Nuclear Instruments and Methods in Physics Research B, 286 (2012) 271-276. https://doi.org/10.1016/j.nimb.2011.12.028
  14. Chunsheng Shi and Masahiko Morinaga, J. Comput. Chem., 27 [6] (2006) 7118-7120.
  15. Yi, J. Y.; Lee, J. K. & Hong, K. S., J. Am.Ceram. Soc., 85 (2002) 3004-3010.
  16. Lewis, G. V.; Catlow, R. A. & Casselton, J. Am. Ceram. Soc., 68 (1985) 555-558. https://doi.org/10.1111/j.1151-2916.1985.tb11523.x
  17. Yeon Soo Sung and Myong Ho Kim, Ferroelectrics, 13 (2010) 217-230.
  18. Zushu Li, William Edward Lee, and Shaowei Zhang, J. Am. Ceram. Soc., 90 [2] (2007) 364-368. https://doi.org/10.1111/j.1551-2916.2006.01383.x
  19. Michael Pollet, Sylvain Marinel, Francois Roulland, J. Eur. Ceram. Soc., 25 (2005) 2773-2777. https://doi.org/10.1016/j.jeurceramsoc.2005.03.138
  20. Woo-Jin Lee, Akihiro Wakahara, Bok-Hee Kim, Ceram. Intl., 31 (2005) 521-524. https://doi.org/10.1016/j.ceramint.2004.06.009
  21. A. J. Moulson and J. M. Herbert, Electroceramics, Materials Properties Applications, London, 79 (1990) 79-82.
  22. C.L. Huang, M.-H. Weng and H.-L. Chen, Mater. Chem. Phys., 71 (2001) 17-22. https://doi.org/10.1016/S0254-0584(00)00528-9
  23. Kwan Soo Kim, Sang Heung Shim, Shin Kim and Sang Ok Yoon, Journal of Ceramic Processing Research, 11 [1] (2010) 47-51.