• Title/Summary/Keyword: Transmission X-ray

Search Result 1,287, Processing Time 0.029 seconds

Preparation of Al2O3 Thin Films by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide and Water and Their Reaction Mechanisms

  • An, Ki-Seok;Cho, Won-Tae;Sung, Ki-Whan;Lee, Sun-Sook;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1659-1663
    • /
    • 2003
  • $Al_2O_3$ thin films were grown on H-terminated Si(001) substrates using dimethylaluminum isopropoxide [DMAl: $(CH_3)_2AlOCH(CH_3)_2$], as a new Al precursor, and water by atomic layer deposition (ALD). The selflimiting ALD process by alternate surface reactions of DMAI and $H_2O$ was confirmed from measured thicknesses of the aluminum oxide films as functions of the DMAI pulse time and the number of DMAI-$H_2O$ cycles. Under optimal reaction conditions, a growth rate of ~1.06 ${\AA}$ per ALD cycle was achieved at the substrate temperature of $150\;^{\circ}C$. From a mass spectrometric study of the DMAI-$D_2O$ ALD process, it was determined that the overall binary reaction for the deposition of $Al_2O_3\;[2\;(CH_3)_2AlOCH(CH_3)_2\;+\;3\;H_2O\;{\rightarrow}\;Al_2O_3\;+\;4\;CH_4\;+\;2\;HOCH(CH_3)_2]$can be separated into the following two half-reactions: where the asterisks designate the surface species. Growth of stoichiometric $Al_2O_3$ thin films with carbon incorporation less than 1.5 atomic % was confirmed by depth profiling Auger electron spectroscopy. Atomic force microscopy images show atomically flat and uniform surfaces. X-ray photoelectron spectroscopy and cross-sectional high resolution transmission electron microscopy of an $Al_2O_3$ film indicate that there is no distinguishable interfacial Si oxide layer except that a very thin layer of aluminum silicate may have been formed between the $Al_2O_3$ film and the Si substrate. C-V measurements of an $Al_2O_3$ film showed capacitance values comparable to previously reported values.

Mineralogical and Geochemical Characteristics of Soils of Barton Peninsula, King George Island, South Shetland Islands, West Antarctica (서남극 사우스셰틀랜드 킹조지섬 바톤반도 육상 토양의 광물학적, 지화학적 특성)

  • Jung, Jaewoo;Koo, Taehee;Yang, Kiho;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • Surface soils on Barton Peninsula, King George Island, West Antarctica were investigated to acquire the mineralogical and geochemical data of soil in Antarctica. Multiline of techniques for example, X-ray diffraction (XRD), transmission electron microscopy (TEM)-electron energy loss spectroscopy (EELS), and wet chemistry analysis were performed to measure the composition of clay minerals, Fe-oxidation states, cation exchange capacity, and total cation concentration. Various minerals in sediments such as smectite, illite, chlorite, kaolinite, quartz and plagioclase were identified by XRD. Fe-oxidation states of bulk soils showed 20-40% of Fe(II) which would be ascribed to the reduction of Fe in clays as well as Fe-bearing minerals. Moreover, redox states of Fe in smectite structure was a ~57% of Fe(III) consistent to the values for the bulk soils. The cation exchange capacity of bulk soils ranged from 100 to 300 meq/kg and differences were not significantly measured for the sampling locations. Total cations (Mg, K, Na, Al, Fe) of bulk soils varies, contrast to the heavy metals (Co, Ni, Cu, Zn, Mn). These results suggested that composition of bed rocks influenced the distribution of elements in soil environments and soils containing clay compositions may went through the bio/geochemical alteration.

Friction and Wear Properties of Plasma-sprayed Cr2O3-MoO3 Composite Coatings at High Temperature (MoO3가 첨가된 Cr2O3 플라즈마 용사코팅의 고온 마찰 마멸 특성)

  • Lyo, In-Woong;Ahn, Hyo-Sok;Lim, Dae-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.851-856
    • /
    • 2002
  • Tribological behavior of plasma-sprayed $Cr_2O_3$-based coatings containing $MoO_3$ at 450$^{\circ}C$ was investigated to understand the influence of $MoO_3$. A reciprocal disc-on-plate type tribo-tester was employed to examine fricition and wear behavior of the specimens. The microstructure and phase composition of the coating was characterized with Transmission Electron Microscopy(TEM). The TEM analysis indicated that $MoO_3$ was dispersed into the grain boundary, resulting in the increase of the hardness and density of the coating. Worn surfaces were investigated by scanning electron microscopy and chemistry of the worn surfaces was analyzed using a X-ray Photoelectron Spectrometer(XPS). The results showed that the friction coefficient of the $MoO_3$-added coatings was lower than that without $MoO_3$ addition. The larger protecting layers were observed at the worn surface of plasma spray coated specimens with $MoO_3$ composition in the protecting layer appears to be more favorable in reducing the friction.

Strain-Relaxed SiGe Layer on Si Formed by PIII&D Technology

  • Han, Seung Hee;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.2-155.2
    • /
    • 2013
  • Strain-relaxed SiGe layer on Si substrate has numerous potential applications for electronic and opto- electronic devices. SiGe layer must have a high degree of strain relaxation and a low dislocation density. Conventionally, strain-relaxed SiGe on Si has been manufactured using compositionally graded buffers, in which very thick SiGe buffers of several micrometers are grown on a Si substrate with Ge composition increasing from the Si substrate to the surface. In this study, a new plasma process, i.e., the combination of PIII&D and HiPIMS, was adopted to implant Ge ions into Si wafer for direct formation of SiGe layer on Si substrate. Due to the high peak power density applied the Ge sputtering target during HiPIMS operation, a large fraction of sputtered Ge atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed Ge plasma, the ion implantation of Ge ions can be successfully accomplished. The PIII&D system for Ge ion implantation on Si (100) substrate was equipped with 3'-magnetron sputtering guns with Ge and Si target, which were operated with a HiPIMS pulsed-DC power supply. The sample stage with Si substrate was pulse-biased using a separate hard-tube pulser. During the implantation operation, HiPIMS pulse and substrate's negative bias pulse were synchronized at the same frequency of 50 Hz. The pulse voltage applied to the Ge sputtering target was -1200 V and the pulse width was 80 usec. While operating the Ge sputtering gun in HiPIMS mode, a pulse bias of -50 kV was applied to the Si substrate. The pulse width was 50 usec with a 30 usec delay time with respect to the HiPIMS pulse. Ge ion implantation process was performed for 30 min. to achieve approximately 20 % of Ge concentration in Si substrate. Right after Ge ion implantation, ~50 nm thick Si capping layer was deposited to prevent oxidation during subsequent RTA process at $1000^{\circ}C$ in N2 environment. The Ge-implanted Si samples were analyzed using Auger electron spectroscopy, High-resolution X-ray diffractometer, Raman spectroscopy, and Transmission electron microscopy to investigate the depth distribution, the degree of strain relaxation, and the crystalline structure, respectively. The analysis results showed that a strain-relaxed SiGe layer of ~100 nm thickness could be effectively formed on Si substrate by direct Ge ion implantation using the newly-developed PIII&D process for non-gaseous elements.

  • PDF

Effects of PtMn composition on carbon supported PtMn catalysts for PEMFC (Mn조성비(組成比)가 PEMFC용(用) Pt/C 전극촉매(電極觸媒) 특성(特性)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Yoo, Sung-Yeol;Kang, Suk-Min;Lee, Jin-A;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.21 no.2
    • /
    • pp.34-40
    • /
    • 2012
  • $Pt_{10}$/C, $Pt_9Mn_1$/C, $Pt_7Mn_3$/C electrocatalysts for Polymer Electrolyte Membrane Fuel Cells(PEMFCs) were synthesized by reduction with HCHO and their activity as a oxygen reduction reaction(ORR) was examined at half cell. The electrochemical oxygen reduction reaction(ORR) was studied by using a glaasy carbon electrode through cyclic voltammetric curves(CV) in a 1 M $H_2SO_4$ solution. The ORR activities of $Pt_9Mn_1$/C were higher than $Pt_{10}$/C, $Pt_7Mn_3$/C. Also potential-current curves of $Pt_9Mn_1$/C at 0.9, 0.8, 0.7, 0.6V for 5minutes respectively were higher than $Pt_{10}$/C, $Pt_7Mn_3$/C. Physical characterization was made by using x-ray diffraction(XRD) and transmission electron microscope(TEM). The TEM images of $Pt_9Mn_1$/C, $Pt_{10}$/C catalysts showed homogenous particle distribution with particle size of about 2.7 nm, 3 nm respectively and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.

Effects of Thermal and Electrical Conductivity of Al(OH)3 Functionalized Graphene/Epoxy Composites by Simple Sol-Gel Method (졸-젤 법을 이용한 Al(OH)3 처리된 그래핀/에폭시 복합체의 열 및 전기전도 특성 분석)

  • Kim, Ji-Won;Im, Hyun-Gu;Han, Jung-Geun;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • Functionalized graphene/epoxy composites were prepared to miprove thermal conductivities of epoxy composites and to maintain electrical insulating property. Graphene oxide (GO) was prepared using Hummers method, and then GO was reacted with aluminum isopropoxide to functionalize $Al(OH)_3$ layer onto GO surface by a simple sol-gel method (Al-GO). GO and Al-GO were characterized by X-ray photoelectron spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. The analyses confirm that GO was coated with a large and dense coverage of $Al(OH)_3$. GO and Al-GO (1 and 3 wt%) were embedded in bisphenol A (DGEBA) to investigate the effects of electrical insulating property. Electrical resistivity showed that Al-GO had better insulating property than GO. Further, the thermal conductivity of GO and Al-GO/epoxy composites was higher than that of neat epoxy resins. In particular, the thermal conductivity of Al-GO/bisphenol F (DGEBF) improved by 23.3% and Al-GO/DGEBA enhanced by 21.8% compared with pure epoxy resins.

Liquid Phase Epitaxial Growth of GaAs on InP Substrates (액상에피택시 방법에 의한 InP기판상의 GaAs 이종접합 박막 성장)

  • Kim, Dong-Geun;Lee, Hyeong-Jong;Im, Gi-Yeong;Jang, Seong-Ju;Jang, Seong-Ju;Kim, Jong-Bin;Lee, Byeong-Taek
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.600-607
    • /
    • 1994
  • Optimum exper~mental conditions were established for the growth of heteroepitaxial GaAs layers on InP using liquid phase epitaxy (LPE) technique. Results showed that the optimum growth temperature was $720^{\circ}C$ at a cooling rate of $0.5^{\circ}C$/min. Surface morphology of the grown layers significantly improved by addition of about 0.005wt% Se to the Ga growth melt, which effectively suppressed melt-back of InP substrates into the melt during the initial stage of growth. It was observed that the quality of GaAs layers also improved substantially when the substrates patterned with grating structure were used, as determined by the (400) double crystal X-ray diffraction. The transmission electron microscopy observation indicated t.hat the misfit dislocations interact with each other at the grating region, resulting in a lower dislocation density in the upper GaAs layer.

  • PDF

Effect of organoclay on the dynamic properties of SBR compound reinforced with carbon black and silica (유기화 클레이의 첨가가 실리카 및 카본블랙를 함유한 SBR 복합체의 동적 특성에 미치는 영향)

  • Son, M.J.;Kim, W.
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.260-267
    • /
    • 2006
  • SBR (styrene-butadiene rubber; 25 wt% of solid contents) nanocomposites reinforced with OLS(organically modified layered silicates) were manufactured via the latex method. Two types of OLS are prepared, i.e. dodecylamine (primary amine) modified montmorillonite (DA-MMT) and N, N-dimethyldodecylamine (tertiary amino) modified MMT (DDA-MMT). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed to characterize the layer distance of OLS and the morphology of the nanocomposites. SBR nanocomposites reinforced with ternary phase filler (carbon black/silica/OLS) systems also manufactured. Dynamic mechanical thermal analysis (DMTA) was performed on these composites to determine the loss factor (tan $\delta$) over a range of temperature($-20^{\circ}C{\sim}80^{\circ}C$). The results showed that there was significant changes on the values or tan $\delta$ with the addition of small amount of the OLS. By increasing the contents of OLS, the values of tan $\delta$ at $0^{\circ}C$ increased but those of tan $\delta$ at $60^{\circ}C$ decreased with increasing OLS contents.

Natural Rubber-Clay Nanocomposites by Latex Method : Morphology and Mechanical Properties (라텍스법에 의한 천연고무-클레이 나노 복합재료: 모폴로지와 기계적 물성)

  • Kim, W.H.;Kang, J.H.;Kang, B.S.;Cho, U.R.
    • Elastomers and Composites
    • /
    • v.41 no.1
    • /
    • pp.27-39
    • /
    • 2006
  • In this study, modified DA-MMT filled NR/DA-MMT nanocomposites were manufactured by a latex method and a compounding method. Cure characteristics and mechanical properties of the Cloisite 15A, carbon black, Na-MMT filled NR compounds and the DA-MMT filled NR compound by a latex method were also evaluated. The filler content of all compounds was 10phr except the carbon black filled compound. Degree of intercalation and dispersion was characterized by X-ray diffraction (XRD) and transmission electron microscope (TEM). According to the XRD diffraction pattern and TEM analysis, extensive intercalation and homogeneous dispersion of the clay were obtained after the two-roll milling. Although the layer distance was increased, some parts of DA-MMT showed the layer distance of Na-MMT after vulcanization. DA-MMT filled NR compounds showed the highest ODR torques, tensile strength, modulus, and tear energy. The NR/DA-MMT nanocomposite (by a latex method) compared with a NR/DA-MMT nanocomposite (by a compounding method) was found that the improvement of the mechanical properties was mainly due to the degree of dispersion of the clay.

Thermal Conductivity Enhancement of Polyimide Film Induced from Exfoliated Graphene Prepared by Electrostatic Discharge Method (정전기 방전에 의해 제조된 흑연박리 그래핀 첨가 폴리이미드 막의 열전도 향상)

  • Lim, Chaehun;Kim, Kyung Hoon;An, Donghae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.143-148
    • /
    • 2021
  • A thermally conductive 200 ㎛ thick polyimide-based film was made from a polyamic acid (PAA) precursor containing graphene prepared from graphite rod using an electrostatic discharge method in order to improve the thermal conductivity and expand the applicability of polyimide (PI) film. Properties of graphene produced by electrostatic discharge were measured by Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). As a result of Raman spectrum and XPS analyses of as-prepared graphene, the ID/IG ratio was 0.138 and C/O value was 24.91 which are excellent structural and surface chemical properties. Moreover, thermal conductivities of polyimide films increased exponentially according to graphene contents but when the graphene content exceeded 40%, the polyimide film could not maintain its shape. The thermal conductivity of carbonized PI film made from PAA containing 40 wt% of graphene was 51 W/mK which is greatly enhanced from the pristine carbonized PI film (1.9 W/mK). This result could be originated from superior properties of graphene prepared from the electrostatic discharge method.