• Title/Summary/Keyword: Transmission X-ray

Search Result 1,290, Processing Time 0.02 seconds

Development and Characteristics of the Soft x-ray transmission W-target tube (W-target 투과 양극형 Soft x-ray tube의 개발 및 특성분석)

  • Kim, Sung-Soo;Kim, Do-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.305-310
    • /
    • 2007
  • The x-ray transmission W-target tube was developed and its characteristics were evaluated. The continuous x-ray was emitted at the tube voltage less than 12kV, and the characteristic x-ray was emitted more than 12kV. From the measurement of the energy distribution and dose of x-ray, it was confirmed that our results are a good agreement with the blown ones. Moreover, in comparison with commercial x-ray tube, it was also found that the characteristics of our x-ray tube is better than the commercial one. Therefore we confirmed that the x-ray tube developed in this study is so good that it can be commercialized.

Determination of Tungsten Target Parameters for Transmission X-ray Tube: A Simulation Study Using Geant4

  • Nasseri, Mohammad M.
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.795-798
    • /
    • 2016
  • Transmission X-ray tubes based on carbon nanotube have attracted significant attention recently. In most of these tubes, tungsten is used as the target material. In this article, the well-known simulator Geant4 was used to obtain some of the tungsten target parameters. The optimal thickness for maximum production of usable X-rays when the target is exposed to electron beams of different energies was obtained. The linear variation of optimal thickness of the target for different electron energies was also obtained. The data obtained in this study can be used to design X-ray tubes. A beryllium window was considered for the X-ray tube. The X-ray energy spectra at the moment of production and after passing through the target and window for different electron energies in the 30-110 keV range were also obtained. The results obtained show that with a specific thickness, the target material itself can act as filter, which enables generation of X-rays with a limited energy.

Characteristics of the X-ray Fluorescence by the 40kV transmission anode x-ray tube (40kV용 투과양극형 x-ray tube에 의한 X-ray 형광 특성)

  • Kim, Sung-Soo;Kim, Do-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.247-252
    • /
    • 2008
  • By using the transmission anode x-ray tube developed to apply to the hand-held XRF equipment, we carried out XRF experiment and evaluated the influences of the x-ray tube on XRF spectra. XRF data, which is measured using the W-target and Rh-target tube, were good agreements with the known results. FWHM of Fe $K_{\alpha}$-line measured by W-target tube with the 35 kV-tube voltage and the $40{\mu}A$-tube current was 180 eV. This result reveals that our XRF equipment using the transmission anode x-ray tube is enough for a qualitative analysis of materials. By comparison XRF data with the integrated intensity of x-ray tube, it was confirmed that Rh-target tube is better than W-target tube for application to the hand-held XRF equipment.

Development and Characteristics of the x-ray transmission anode tube for the thickness measurement of film (필름 두께 측정용 투과 양극형 x-ray tube의 개발 및 특성)

  • Kim, Sung-Soo;Kim, Do-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.240-246
    • /
    • 2008
  • The x-ray transmission anode Ag-target tube was developed to apply for the thickness measurement of film in the thickness range of several tens$\sim$several hundreds ${\mu}m$ and its characteristics were evaluated. The energy distribution and dose of x-ray from Ag-target tube was investigated at the tube voltage near 10 kV, and discussed in comparition with that from W-target tube. The energy distribution and dose of x-rays passing through film were measured with various thickness of Ny and PP film. From these results, it was confirmed that our x-ray tube can be applied for the thickness measurement of film.

Development and its Characteristics of the 40kV x-ray transmission anode target tube (40kV용 투과 양극형 x-ray tube의 개발 및 특성분석)

  • Kim, Sung-Soo;Kim, Do-Yun
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.234-239
    • /
    • 2008
  • Tungsten and rhodium target tube for a 40 kV x-ray transmission anode was developed to apply to the hand-held XRF(X-Ray Fluorescence) apparatus and its characteristics were evaluated. From the measurement of the energy distribution and dose of x-ray, it was confirmed that our results were good agreements with the known ones. The optimum thickness of metal film deposited on Be window to extract the maximum dose were $2.6{\mu}m$ and $2.7{\mu}m$ in case of W-target tube and Rh-target tube, respectively. When it was continuously worked during 30 min. at 40 kV in tube voltage and at $60{\mu}A$ in tube current, the temperature at target did not exceed $50^{\circ}C$. Our results reveals that the 40 kV x-ray transmission anode tube can be applied to the hand-held XRF apparatus.

Monte Carlo Simulation of Transmission-Type X-ray Tube with Dual-Structured Target (이중 적층 구조 표적을 갖는 투과형 엑스선관의 몬테카를로 전산모사)

  • Kwon Su, Chon
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.107-114
    • /
    • 2023
  • X-ray fluorescence analysis has been widely used in the field of science and industry because it gives information about elements and their concentrations without destruction of samples. To increase analysis accuracy of fluorescence generated by photons of the transmission-type X-ray tube for mixture and compound samples would be recommend to have strong energy near 10 keV and 20 keV simultaneously. Tungsten of 9.65 keV and molybdenum of 17.48 keV were considered as targets with dual deposition structure for obtaining two strong characteristic X-rays, and the transmission-type X-ray tube was analyzed using Geant4 Monte Carlo simulation. The W-Mo structure resulted in strong characteristic X-ray near 10 keV and 20 keV simultaneously. A structure with Mo-W multilayers of 5 ㎛ thick also gave optimal spectrum. Various material combination and thickness optimization for the dual-structured target can give X-ray spectrum with strong characteristic X-ray of specific energies.

Thickness-dependent magnetic domain structures of Co ultra-thin film investigated by scanning transmission X-ray microscopy

  • Yoon, Ji-Soo;Kim, Namdong;Moon, Kyoung-Woong;Lee, Joo In;Kim, Jae-Sung;Shin, Hyun-Joon;Kim, Wondong
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1185-1189
    • /
    • 2018
  • Thickness-dependent magnetic domain structure of ultrathin Co wedge films (0.3 nm-1.0 nm) sandwiched by Pt layers was investigated by scanning transmission x-ray microscopy (STXM) employing X-ray magnetic circular dichroism (XMCD), utilizing elliptically polarized soft x-rays and electromagnetic fields, with a spatial resolution of 50 nm. The magnetic domain images measured at the Co $L_3$ edge showed the evolution of the magnetic domain structures from maze-like form to the bubble-like form as the perpendicular magnetic field was applied. The asymmetric domain expansion of a 500 nm-scale bubble domain was also measured when the in-plane and perpendicular external magnetic field were applied simultaneously.

Weld Quality Evaluation Method for the Resistance Spot Welds using X-ray Transmission Inspection (X-선 투과검사를 이용한 저항 점용접부 품질평가기법)

  • Lee, Jong-Dae;Lee, So-Jeong;Bang, Jung-Hwan;Yoon, Gil-Sang;Kim, Mok-Soon;Kim, Jun-Ki
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.1-7
    • /
    • 2014
  • For the resistance spot welds of CR1180 and GA1180 TRIP steels, the weld quality evaluation method using the digitalized X-ray transmission imaging apparatus was investigated in comparison with the crosssectional examination method. In the case of the resistance spot welding of CR1180, three circular regions, such as WZ(white zone), GZ(grey zone) and DZ(dark zone), appeared on X-ray image and they corresponded to the diameters of indentation mark, nugget and corona bond, respectively. The variation of X-ray transmission thickness due to the thickness variation of the weld seemed to be mainly responsible for the formation of those contrasts. The X-ray image contrast formed from the variation of transmission thickness at the outer border line of DZ could also enable the inspections of the notch shape, nonuniformity of the welding pressure and spatter from its sharpness, concentricity and the normal straight line, respectively. The X-ray image of the resistance spot weld of galvannealed GA1180 TRIP steel was very similar to that of CR1180 TRIP steel except the crown shaped outer border line of DZ which was considered to be due to the melting behavior of zinc having the boiling temperature even lower than the melting temperature of steel.

Empirical Determination of a CT X-ray Spectra by Numerical Analysis using Transmission Data (투과선량의 수치해석에 의한 전산화단층영상장치 X선의 에너지 분포결정)

  • 최태진;김옥배;서수지
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.35-43
    • /
    • 1997
  • The knowledge of x-ray spectra is highly desirable in some investigation involves the differential penetrating power and absorption coefficient correction of various photon beam. The transmission data were obtained from the 80 kVp and 120 kVp of CT x-ray beam with the aluminium filter which is designed in a 30 cm of diameter and pipe-typed filter was prepared from 5.0 mm upto 92.3 mm of thickness. To obtain the reconstructed spectra of CT x-ray, the investigator used the iterative numerical analysis which has been extended to include the tungsten characteristics from experimental transmission data with energy interval of 2 keV. Comparison of the calculated transmission data from the reconstructed spectra with that of measurement shows good agreement in both 80 kVp and 120 kVp x-ray beams. This numerical analysis based on iteratively calculation of fractional exposure per energy interval shows the high potential of usefulness of determination the x-ray spectra from the attenuated beam in diagnostic energy range.

  • PDF

Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

  • Chae, Sejung R.;Moon, Juhyuk;Yoon, Seyoon;Bae, Sungchul;Levitz, Pierre;Winarski, Robert;Monteiro, Paulo J.M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.95-110
    • /
    • 2013
  • We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction.