• Title/Summary/Keyword: Transmission Properties

Search Result 1,879, Processing Time 0.029 seconds

Layer-specific cholinergic modulation of synaptic transmission in layer 2/3 pyramidal neurons of rat visual cortex

  • Cho, Kwang-Hyun;Lee, Seul-Yi;Joo, Kayoung;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.5
    • /
    • pp.317-328
    • /
    • 2019
  • It is known that top-down associative inputs terminate on distal apical dendrites in layer 1 while bottom-up sensory inputs terminate on perisomatic dendrites of layer 2/3 pyramidal neurons (L2/3 PyNs) in primary sensory cortex. Since studies on synaptic transmission in layer 1 are sparse, we investigated the basic properties and cholinergic modulation of synaptic transmission in layer 1 and compared them to those in perisomatic dendrites of L2/3 PyNs of rat primary visual cortex. Using extracellular stimulations of layer 1 and layer 4, we evoked excitatory postsynaptic current/potential in synapses in distal apical dendrites (L1-EPSC/L1-EPSP) and those in perisomatic dendrites (L4-EPSC/L4-EPSP), respectively. Kinetics of L1-EPSC was slower than that of L4-EPSC. L1-EPSC showed presynaptic depression while L4-EPSC was facilitating. In contrast, inhibitory postsynaptic currents showed similar paired-pulse ratio between layer 1 and layer 4 stimulations with depression only at 100 Hz. Cholinergic stimulation induced presynaptic depression by activating muscarinic receptors in excitatory and inhibitory synapses to similar extents in both inputs. However, nicotinic stimulation enhanced excitatory synaptic transmission by ~20% in L4-EPSC. Rectification index of AMPA receptors and AMPA/NMDA ratio were similar between synapses in distal apical and perisomatic dendrites. These results provide basic properties and cholinergic modulation of synaptic transmission between distal apical and perisomatic dendrites in L2/3 PyNs of the visual cortex, which might be important for controlling information processing balance depending on attentional state.

Moisture Transmission Characteristics of Fabric for High Emotional Garments -Moisture Transmission Characteristics according to Fiber Properties, Yarn Characteristics and Test Method- (고감성 의류용 직물의 수분이동특성 -섬유소재와 실 특성 및 실험방법에 따른 수분이동특성-)

  • Kim, SeungJin;Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.28-42
    • /
    • 2017
  • Moisture transfer characteristics of high emotional garments are important to evaluate wear comfort. Wicking and drying measurement methods are also critical for perspiration absorption and quick dry fabric made of high functional fibers. In this study, the wicking and drying properties of high emotional fabrics made from hybrid composite yarns using CoolMax, Tencel, Bamboo staple fibers and PP. PET CoolMax filaments were also measured and analyzed according to various measuring methods. The wicking property of hybrid composite yarn fabrics by Bireck method was mostly influenced by the structure of hybrid yarns than the absorption rate of constituent fibers; however, both the hygroscopicity of fibers and the composite yarn structure affected the wicking property of the fabrics in the drop method. Concerning drying properties, the KSK 0815B method measuring distilled moisture weight was more relevant to explain the drying characteristics of hybrid yarn fabrics than the KSK 0815A method measuring the time to drying. This study revealed that the drying properties of hybrid yarn fabrics were influenced by the hygroscopicity of constituent fibers, wicking properties of constituent yarns and structure of composite yarns.

A Design of MGA-Pl Supplementary Controller in SVC for Power Oscillation Damping of HVDC Transmission System (초고압 직류송전 시스템의 전력 동요억제를 위한 정지형 무효전력 보상기에 MGA-PI 보조제어기 설계)

  • O, Tae-Gyu;Jeong, Hyeong-Hwan;Heo, Dong-Yeol;Lee, Jeong-Pil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.317-326
    • /
    • 2002
  • In this paper, a methodology for optimal PI supplementary controller using the modified genetic algorithm has been proposed to the oscillation damping in HDVC transmission system. These study processes are summarized as the formulation for load flow calculation in HVDC transmission system with SVC, the investigations on the basic control in HVDC system, the mathematical modeling for dynamic characteristics analyses, and the optimal design of MGA based PI controller generation the supplementary control signal of SVC. Its properties were verified through a series of computer simulations including dynamic stability. It means that the application of MGA-PI controller in HVDC transmission system can contribute the propriety to the improvement of the stability in HVDC transmission system and the design of MGA-OI controller has been proved indispensible when applied to HVDC transmission system.

Dynamic Line Rating Prediction in Overhead Transmission Lines Using Artificial Neural Network (신경회로망을 이용한 송전선 허용용량 예측기법)

  • Noh, Shin-Eui;Kim, Yi-Gwhan;Lim, Sung-Hun;Kim, Il-Dong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.79-87
    • /
    • 2014
  • With the increase of demand for electricity power, new construction and expansion of transmission lines for transport have been required. However, it has been difficult to be realized by such opposition from environmental groups and residents. Therefore, the development of techniques for effective use of existing transmission lines is more needed. In this paper, the major variables to affect the allowable transmission capacity in an overhead transmission lines were selected and the dynamic line rating (DLR) method using artificial neural networks reflecting unique environment-heat properties was proposed. To prove the proposed method, the analyzed results using the artificial neural network were compared with the ones obtained from the existing method. The analyzed results using the proposed method showed an error of 0.9% within ${\pm}$, which was to be practicable.

Design of Optical Filters using Grating-Assisted Fiber Couplers (GAFCs)

  • Ho Kwang-Chun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.276-280
    • /
    • 2004
  • This paper first takes advantage of a rigorous modal transmission-line theory (MTLT) to analyze the filtering properties of optical waves guiding by grating-assisted fiber couplers (GAFCs). The numerical results reveal that MTLT serves as a suitable and powerful approach to evaluate systematically the dispersion properties and the characteristics of optical power transfer in GAFCs.

  • PDF

Effect of Water-and Oil-Repellent Finish on Barrier Properties of Nonwoven Fabrics (발수발유가공처리가 부직포의 차단성능에 미치는 영향)

  • Cho, Gilsoo;Choi, Jongmyoung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.4
    • /
    • pp.577-586
    • /
    • 1993
  • Pesticide protective clothing has not been frequently worn due to its lack of thermal comfort. It is important to develop fabrics which can allow the wearer to work in comfort. One of the possible way to achieve the goal is to produce fabrics with a water- and oil-repellent finish which would resist pesticide penetration but maintain some breathability. The purpose of this study were to evaluate the pesticide barrier properties of untreated and water- and oil-repellent finished nonwoven fabrics. Three types of nonwoven fabrics(Tyvek, Sontara and Kimlon) were used as test specimens. By pad-dry-cure method, each of the specimen was treated with fluorocarbon. The pesticide barrier properties (amount of pesticide penetration and residue) were measured by the gas chromatography. The performance properties of untreated and treated specimens were evaluated with respects to water pepellency(KS K 0590), oil repellency(AATCC 118), water resistance(KS K 0591, AATCC 42), water vapor transmission (KS A 1013) and air permeability(KS K 0570). The results of this study were as follows : 1) The untreated Sontara showed much more amount of pesticide penetration than untreated Tyvek and Kimlon, while the treated Sontara showed little amount of pesticide penetration. 2) After laundering, the amount of pesticide residue in the untreated and treated Sontara was less than that in Tyvek and in Kimlon. 3) Water- and oil-repellent finish improved water repellency, oil repellency, and water resistance of specimens. 4) The untreated Sontara and Kimlon showed higher water vapor transmission and air permeability than untreated Tyvek. Water vapor transmission and air permeability of treated specimen decreased compared to those of untreated.

  • PDF

Environmentally Friendly Moisture-proof Paper with Superior Moisture Proof Property (I) -Properties of Moisture Proof Chemicals- (방습 효과가 우수한 환경친화적 방습지(제1보) -방습제의 특성-)

  • 유재국;조욱기;이명구
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.15-20
    • /
    • 2001
  • The function of the moisture-proof paper is to prevent moisture from adsorbing into the packed goods. Water-vapor transmission rate of the moisture-proof paper should be less than 100g/$m^2$.24hr and the optimum rate would be less than 50g/$m^2$.24hr. In general the moisture-proof paper has been made by laminating polyethylene or polypropylene on top of the base paper. However this kind of moisture-proof paper has a problem in recycling so that it brings about environmental pollution. In general the moisture-proof paper has been made by laminating polyethylene or polypropylene on top of the base paper. However this kind of moisture-proof paper has a problem in recycling so that it brings about environmental pollution. The purpose of this paper was to make moisture-proof paper using the mixture of SB latex and wax emulsion which was recyclable and environmentally friendly. Water vapor transmission rate showed less than 50g/$m^2$.24hr in mixture ratio of 85:15, 87:13, 90:10. Especially the mixture ratio of 87:13 showed the most favorable water-vapor transmission rate. However, the moisture-proof layer was destroyed slightly by folding in packing. It has been observed that there was no close relationship between water-vapor transmission rate of the moisture-proof paper and grammage of the base paper, but the density of base paper had influenced on water vapor transmission rate. It was also observed that the moisture-proof paper could be recycled. The moisture-proof paper was similar to base paper in degree of the pulping, and there was no significant difference in dispersion between moisture-proof paper and base paper. Most of wax particles which caused the spots during drying process could be removed by flotation process. Tensile strength and tear strength of both moisture-proof paper and base paper after pulping were measured to examine the fiber bonding, and no significant difference in physical properties was observed.

  • PDF

Rigorous Analysis of Periodic Blazed 2D Diffraction Grating using Eigenvalue Problem of Modal Transmission-Line Theory (모드 전송선로 이론의 고유치 문제를 사용한 주기적인 blazed 2D 회절격자의 정확한 분석)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.173-178
    • /
    • 2019
  • To analyze the diffraction properties of optical signals by periodic blazed 2D diffraction gratings, Toeplitz dielectric tensor is first defined and formulated by 2D spatial Fourier expansions associated with asymmetric blazed grating profile. The characteristic modes in each layer is then based on eigenvalue problem, and the complete solution is found rigorously in terms of modal transmission-line theory (MTLT) to address the pertinent boundary-value problems. Toeplitz matrix of symmetric and sawtooth profiles is derived from that of asymmetric blazed grating profile, and the diffraction properties for each profile are numerically simulated. The numerical results reveal that the asymmetric and symmetric profiles behave as anti-reflection GMR filter while the sawtooth profile works better as anti-transmission one rather than anti-reflection filter.

Comparison with Dispersion Compensation Scheme Using 10 Gbit/s × 40 Channels Wavelength Division Multiplexing Transmission over 323 km of Field Installed Non-Zero Dispersion Shift Fiber

  • Kim, Geun-Young;Park, Soo-Jin;Jeong, Ki-Tae
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.112-117
    • /
    • 2006
  • We experimentally investigated the transmission characteristics of 400 Gbit/s (10 Gbit/s ${\times}$ 40 channels) WDM signals with 100 GHz channel spacing over 323 km of installed NZ_DSF. The installed fiber has optical properties of 0.28 dB/km attenuation, 4.3 ps/nm/km dispersion, $0.083ps/nm^2/km$ dispersion slope and less than $0.05ps/km^{1/2}$ PMD coefficient. In this experiment, two cases of dispersion compensation schemes, the lumped type and the distributed type, were compared. The results implied that the distributed type dispersion compensation in which dispersion compensation devices are inserted at the end of the each span showed better transmission performance than the lumped one in which dispersion compensation devices are located at the transmitter and receiver sites. From the analysis of the experimental results, we verified that different transmission performance comes from the power penalty induced by XPM in the distributed scheme is lower than the lumped scheme case.

Improved Selective Randomized Load Balancing in Mesh Networks

  • Zhang, Xiaoning;Li, Lemin;Wang, Sheng;Yang, Fei
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.255-257
    • /
    • 2007
  • We propose an improved selective randomized load balancing (ISRLB) robust scheme under the hose uncertainty model for a special double-hop routing network architecture. The ISRLB architecture maintains the resilience properties of Valiant's load balancing and reduces the network cost/propagation delay in all other robust routing schemes.

  • PDF