• Title/Summary/Keyword: Transmission Line Method

Search Result 1,065, Processing Time 0.03 seconds

Dynamic Thermal Rating of Transmission Line Based on Environmental Parameter Estimation

  • Sun, Zidan;Yan, Zhijie;Liang, Likai;Wei, Ran;Wang, Wei
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.386-398
    • /
    • 2019
  • The transmission capacity of transmission lines is affected by environmental parameters such as ambient temperature, wind speed, wind direction and so on. The environmental parameters can be measured by the installed measuring devices. However, it is impossible to install the environmental measuring devices throughout the line, especially considering economic cost of power grid. Taking into account the limited number of measuring devices and the distribution characteristics of environment parameters and transmission lines, this paper first studies the environmental parameter estimating method of inverse distance weighted interpolation and ordinary Kriging interpolation. Dynamic thermal rating of transmission lines based on IEEE standard and CIGRE standard thermal equivalent equation is researched and the key parameters that affect the load capacity of overhead lines is identified. Finally, the distributed thermal rating of transmission line is realized by using the data obtained from China meteorological data network. The cost of the environmental measurement device is reduced, and the accuracy of dynamic rating is improved.

The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line (체적부하를 갖는 유체 전달관로의 압력전파 특성)

  • 윤선주;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

A study on the prediction method of the real fault distance using probability to the relay data of transmission line fault location (송전선로 거리표정치에 대한 실 고장거리의 확률적 예측방안)

  • Lee, Y.H.;Back, D.H.;Jang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.10-11
    • /
    • 2006
  • The fault location is obtained from the distance relay that detects the fault of the transmission line. In this time, transmission line crews track down the fault location and the reasons. However, because of having error at the fault location of the distance relay, there is a discordance between real and obtained fault location. As this reason, the inspection time for finding fault location can be longer. In this paper, we proposed the statistical (regression) analysis method based on each type of relay's the historical fault location data and the real fault distance data to improve the problems. With finding the regression equation based on the regression analysis, and putting the relay fault location into that equation, the real fault distance is calculated. As a result of the Prediction fault location, the inspection time of transmission line can be reduced.

  • PDF

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Advanced Computational Intelligence(ACI) (ACI 기법을 이용한 송전선로 고장 종류 판별에 관한 연구)

  • Park Jae Hong;Lee Jong Beom
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.619-621
    • /
    • 2004
  • This paper presents the rapid and accurate algorithm for fault discrimination in transmission lines. When faults occur in transmission lines, fault discrimination is very important. If high impedance faults occur in transmission lines, it cannot be detected by overcurrent relays. The method using current and voltage cannot discriminate high impedance fault. Because of this reason this paper uses voltage and zero sequence current, and the proposed algorithm uses fuzzy logic method. This algorithm uses voltage and zero sequence current per period in case of faults. Single line ground fault and three-phase fault can be detective using voltage. Two-line ground fault and line to line fault and high impedance can be detected using zero sequence current. To prove the performance of the algorithm, it test algorithm with signal obtained from ATPDraw simulation.

  • PDF

Reference Signal Design of TFDR for Low Voltage Power Transmission Line (저압배선의 이상 진단을 위한 시간-주파수영역 반사파계측 방법의 기준신호 설계기법 연구)

  • Lee, Chun-Ku;Kwak, Ki-Seok;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1543-1544
    • /
    • 2008
  • In this paper, we introduce a gaussian enveloped linear chirp signal that can change parameters for consideration of target material characteristics. Using the gaussian enveloped linear chirp signal, time-frequency domain reflectomety is able to detect fault location in power transmission line. we suggest design method of reference signal for power transmission line fault detection. This method is verified by locating fault in HIV low voltage power transmission line.

  • PDF

A Study of the Development of Power System Model for Performance Test of Transmission Line Protective Relay (송전선로 보호용 보호계전기 시험을 위한 계통모델 개발에 관한 연구)

  • Seo H. C.;Lee H. H.;Kim C. H.;Lee J. W.;Jang B. T.;Gwak N. H.;Kim H. P.;Kim l. D.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.430-432
    • /
    • 2004
  • The standard power system model is needed to test a transmission line protective relay There are two methods to develop a power system model for transmission line protection. First method is based on characteristic power system model, and second method is based on functional power system model. This paper presents a standard power system model for performance test of transmission line protective relay, where the power system model is based on the two methods. And this model is simulated by using RTDS to test a protective relay.

  • PDF

Improvement of Digital Distance Relaying Algorithm Using Wavelet Transform in Combined Transmission Line (웨이브렛을 이용한 혼합송전선로에서의 거리계전 알고리즘 개선)

  • 정채균;김경호;하체웅;이종범;윤양웅
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.593-601
    • /
    • 2003
  • Distance realy is tripped by the line impedance calculated at the relay point. Accordingly the accurate operation depends on the precise calculation of line impedance. Impedance can be accurately calculated in case of overhead line. However, in case of power cables or combined transmission lines, impedance can not be accurately calculated because cable systems have the sheath, grounding resistance, and sheath voltage limiters(SVLs). There are also several grounding systems in cable systems. Therefore, if there is a fault in cable systems, these terms will severely be caused much error to calculation of impedance. Accordingly the proper compensation should be developed for the correct operation of the distance relay. This paper presents the distance calculating algorithm in combined transmission line with power cable using wavelet transform. In order to achieve such purpose, judgement method to discriminate the fault section in both sections was proposed using D1 coefficient summation in db4. And also, error compensation value was proposed for correct calculation of impedance in power cables section.

Analysis of Leakage Current Waveforms for Transmission Line Porcelain Insulators due to ESDD Contamination (ESDD 오손에 따른 송전용자기애자의 누설전류 파형의 분석)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1461-1470
    • /
    • 2012
  • This paper reports the contamination performance of transmission line porcelain insulators tested under five different contaminant conditions - clean and ESDD (equivalent salt deposit density) level (A, B, C, and D) through measurement of their leakage current under drop of potential method. To estimate the contamination for transmission line porcelain insulators, leakage current waveform and its maximum value were measured under step-up power test. In the clean insulators test, % distortion factors decreased with increasing step-up power, and as the ESDD level increased, some characteristics such as frequency analysis, harmonics and % distortion facotor could be used for contamination diagnosis of the transmission line porcelain insulators.

A Study for the Equivalent Circuit and Slow-Wave Factor of Defected Ground Structure Transmission Line (DGS 전송선로의 등가회로와 전파지연계수에 대한 재고찰)

  • Lim, Jong-Sik;Koo, Ja-Kyung;Han, Sang-Min;Jeong, Yong-Chae;Ahn, Dal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2041-2046
    • /
    • 2008
  • A frequency-dependent slow-wave factor (SWF) and equivalent circuit model of transmission line with defected ground structures (DGS) is described. Once S-parameters of a DGS transmission line are given, the conventional frequency -independent equivalent circuit elements are extracted using 3dB cutoff and resonant frequencies (Fc and Fo) as the first step. Using the initial equivalent elements and simple transmission line theories, a frequency-dependent equivalent transmission line model is established through an analytical method, and finally the frequency dependent SWF is calculated. The proposed equivalent circuit model and SWF are frequency-dependent and more reliable because even small insertion loss within available passband is considered, while they have been independent of frequency.

A Novel Transmission Line Characterization Based on Measurement Data Reconfirmation

  • Eo, Yungseon
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.17-27
    • /
    • 2016
  • In the high-frequency characterizations of planar circuit components, measurement data may not be physical. It is mainly due to resonance effects concerned with discontinuities which are inevitable for a planar component characterization. In this paper, a novel accurate transmission line characterization method is presented that excludes the resonance effects based on measurement data reconfirmation. For the physically obvious data acquisition near the resonance frequencies of a transmission line, the additional lines with different line lengths are fabricated on the same substrate. The test transmission lines are characterized by using vector network analyzer (VNA) in 100 MHz to 26.5 GHz. It is shown that an accurate transmission line characterization can be achieved with the proposed measurement data reconfirmation technique.