• 제목/요약/키워드: Translational research

검색결과 535건 처리시간 0.027초

Cost-effective method for reducing local failure of floodwalls verified by centrifuge tests

  • Chung R. Song;Binyam Bekele;Brian D. Sawyer;Ahmed Al-Ostaz;Alexander Cheng;Vanadit-Ellis Wipawi
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.155-165
    • /
    • 2023
  • Hurricane Katrina swept New Orleans, Louisiana, USA, in 2005, causing more than 1,000 fatalities and severe damage to the flood protection system. Recovery activities are complete, however, clarifying failure mechanisms and devising resilient and cost-effective retrofitting techniques for the flood protection system are still of utmost importance to enhance the general structural integrity of water retaining structures. This study presents extensive centrifuge test results to find various failure mechanisms and effective retrofitting techniques for a levee system. The result confirmed the rotational failure and translational failure mechanisms for the London Ave. Canal levee and 17th St. Canal levee, respectively. In addition, it found that the floodwalls with fresh waterstop in their joints perform better than those with old/weathered waterstop by decreasing pore water pressure build-up in the levee. Structural caps placed on the top of the joints between I-walls could also prevent local failure by spreading the load to surrounding walls. At the same time, the self-sealing bentonite-sand mixture installed along the riverside of floodwalls could mitigate the failure of floodwalls by blocking the infiltration of seepage water into the gap formed between levee soils and floodwalls.

오가노이드를 활용한 약물 검색 플랫폼 (Drug Discovery Platform Using Organoids)

  • 맹주은;김순찬;송명현;정나현;구자록
    • Journal of Digestive Cancer Research
    • /
    • 제10권2호
    • /
    • pp.82-91
    • /
    • 2022
  • Gastrointestinal cancer accounts for one-third of the overall cancer occurrence worldwide. Pancreatic ductal adenocarcinoma (PDAC) is a type of gastrointestinal cancer that is known to be one of the most fatal among all cancer types, with a 5-year survival rate of less than 8%. Chemotherapy combined with surgical resection is its probable curative option. However, surgery is accessible for only 10-15% of patients diagnosed with PDAC. Organoids show self-organizing capacities and resemble the original tissue in terms of morphology and function. Organoids can also be cultured with high effectiveness from tumor tissues derived from each patient, making them an extremely fitting model for translational uses and improving personalized cancer medicine. Enhancing drug screening platforms is necessary to apply personalized medicinebased organoids in clinical settings.

Acupuncture and Moxibustion for Cancer-related Fatigue: a Systematic Review and Meta-analysis

  • He, Xi-Ran;Wang, Quan;Li, Ping-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.3067-3074
    • /
    • 2013
  • Background: Faced with highly prevalent and recalcitrant cancer-related fatigue (CRF), together with the absence of any official guidelines on management, numerous groups have been striving to seek and test alternative therapies including acupuncture and moxibustion. However, different patients have various feedbacks, and the many clinical trials have given rise to varied conclusions. In terms of the therapeutic effect of acupuncture and moxibustion, there exist vast inconsistencies. Objective: The aim of the study was to evaluate the auxiliary effectiveness of acupuncture and moxibustion in the treatment of CRF, and to provide more reliable evidence to guide clinical practice. Methods: Randomized controlled trials (RCTs) published before December 2012 were all aggregated, focusing on evaluation of acupuncture or moxibustion for CRF. The quality of the included studies was assessed basing on Cochrane handbook 5.1.0, and the available data were analyzed with RevMan software (version 5.2.0). Descriptive techniques were performed when no available data could be used. Results: A total of 7 studies involving 804 participants were eligible. With real acupuncture versus sham acupuncture, subjects receiving true acupuncture benefited more in the reduction of fatigue. With real acupuncture versus acupressure or sham acupressure, fatigue level appeared 36% improved in the acupuncture group, but 19% in the acupressure group and only 0.6% with sham acupressure. When real acupuncture plus enhanced routine care was compared with enhanced routine care, the combination group improved mean scores for general fatigue, together with physical and mental fatigue. With real acupuncture versus sham acupuncture or wait list controls, the real acupuncture group displayed significant advantages over the wait list controls at 2 weeks for fatigue improvement and better well-being effects at 6 weeks. When moxibustion plus routine care was compared with routine care alone, the meta-analyses demonstrated the combination had a relatively significant benefit in improving severe fatigue and QLQ-C30. Conclusion: Up to the search date, there exist few high quality RCTs to evaluate the effect of acupuncture and moxibustion, especially moxibustion in English. Yet acupuncture and moxibustion still appeared to be efficacious auxiliary therapeutic methods for CRF, in spite of several inherent defects of the included studies. Much more high-quality studies are urgently needed.

술자의 영상정합의 경험이 컴퓨터 단층촬영과 광학스캔 영상 간의 정합 정확성과 작업시간에 미치는 영향 (Effect of image matching experience on the accuracy and working time for 3D image registration between radiographic and optical scan images)

  • 마이항나;이두형
    • 대한치과보철학회지
    • /
    • 제59권3호
    • /
    • pp.299-304
    • /
    • 2021
  • 목적: 본 연구의 목적은 컴퓨터 단층촬영과 광학스캔 영상의 정합에서 술자의 경험이 정합의 정확성과 소요시간에 미치는 영향을 조사하는 것이다. 재료 및 방법: 치아결손이 없은 성인 악궁의 컴퓨터 단층촬영과 광학스캔 영상(IDC S1, Amann Girrbach, Koblah, Austria)이 수집되었다. 두 영상간의 영상정합이 임플란트 진단 소프트웨어(Implant Studio, 3Shape, Copenhagen, Denmark)에서 점 기반 자동매칭 방식으로 행해졌다. 영상정합 경험자 군과 미경험자 군으로 나누어 진행되었으며 작업시간이 기록되었다(군당 15명). 각 군의 영상 정합 정확성은 구치부에서의 선형 오차값으로 측정되었다. 정확성 값과 작성시간의 통계적 비교 분석을 위해 유의수준 0.05에서 독립표본 t검정이 이용되었다. 결과: 영상정합의 선형오차값은 경험자 군과 미경험자 군 간에 통계적인 차이가 없었다. 영상정합에 소요한 시간은 경험자 군이 미경험자 군에 비해 유의하게 짧았다(P = .007). 결론: 술자의 영상정합의 경험의 차이는 점 기반 자동정합이 사용된 경우 정합 정확성에 유의한 영향을 미치지 않는 것으로 보인다. 경험자에서 정합에 소요된 시간은 짧았다.

Tissue Microarrays in Biomedical Research

  • Chung, Joon-Yong;Kim, Nari;Joo, Hyun;Youm, Jae-Boum;Park, Won-Sun;Lee, Sang-Kyoung;Warda, Mohamad;Han, Jin
    • Bioinformatics and Biosystems
    • /
    • 제1권1호
    • /
    • pp.28-37
    • /
    • 2006
  • Recent studies in molecular biology and proteomics have identified a significant number of novel diagnostic, prognostic, and therapeutic disease markers. However, validation of these markers in clinical specimens with traditional histopathological techniques involves low throughput and is time consuming and labor intensive. Tissue microarrays (TMAs) offer a means of combining tens to hundreds of specimens of tissue onto a single slide for simultaneous analysis. This capability is particularly pertinent in the field of cancer for target verification of data obtained from cDNA micro arrays and protein expression profiling of tissues, as well as in epidemiology-based investigations using histochemical/immunohistochemical staining or in situ hybridization. In combination with automated image analysis, TMA technology can be used in the global cellular network analysis of tissues. In particular, this potential has generated much excitement in cardiovascular disease research. The following review discusses recent advances in the construction and application of TMAs and the opportunity for developing novel, highly sensitive diagnostic tools for the early detection of cardiovascular disease.

  • PDF

SERCA2a: a prime target for modulation of cardiac contractility during heart failure

  • Park, Woo Jin;Oh, Jae Gyun
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.237-243
    • /
    • 2013
  • Heart failure is one of the leading causes of sudden death in developed countries. While current therapies are mostly aimed at mitigating associated symptoms, novel therapies targeting the subcellular mechanisms underlying heart failure are emerging. Failing hearts are characterized by reduced contractile properties caused by impaired $Ca^{2+}$ cycling between the sarcoplasm and sarcoplasmic reticulum (SR). Sarcoplasmic/endoplasmic reticulum $Ca^{2+}$ ATPase 2a (SERCA2a) mediates $Ca^{2+}$ reuptake into the SR in cardiomyocytes. Of note, the expression level and/or activity of SERCA2a, translating to the quantity of SR $Ca^{2+}$ uptake, are significantly reduced in failing hearts. Normalization of the SERCA2a expression level by gene delivery has been shown to restore hampered cardiac functions and ameliorate associated symptoms in pre-clinical as well as clinical studies. SERCA2a activity can be regulated at multiple levels of a signaling cascade comprised of phospholamban, protein phosphatase 1, inhibitor-1, and $PKC{\alpha}$. SERCA2 activity is also regulated by post-translational modifications including SUMOylation and acetylation. In this review, we will highlight the molecular mechanisms underlying the regulation of SERCA2a activity and the potential therapeutic modalities for the treatment of heart failure.

Protein tyrosine phosphatase PTPRT as a regulator of synaptic formation and neuronal development

  • Lee, Jae-Ran
    • BMB Reports
    • /
    • 제48권5호
    • /
    • pp.249-255
    • /
    • 2015
  • PTPRT/RPTPρ is the most recently isolated member of the type IIB receptor-type protein tyrosine phosphatase family and its expression is restricted to the nervous system. PTPRT plays a critical role in regulation of synaptic formation and neuronal development. When PTPRT was overexpressed in hippocampal neurons, synaptic formation and dendritic arborization were induced. On the other hand, knockdown of PTPRT decreased neuronal transmission and attenuated neuronal development. PTPRT strengthened neuronal synapses by forming homophilic trans dimers with each other and heterophilic cis complexes with neuronal adhesion molecules. Fyn tyrosine kinase regulated PTPRT activity through phosphorylation of tyrosine 912 within the membrane-proximal catalytic domain of PTPRT. Phosphorylation induced homophilic cis dimerization of PTPRT and resulted in the inhibition of phosphatase activity. BCR-Rac1 GAP and Syntaxin-binding protein were found as new endogenous substrates of PTPRT in rat brain. PTPRT induced polymerization of actin cytoskeleton that determined the morphologies of dendrites and spines by inhibiting BCR-Rac1 GAP activity. Additionally, PTPRT appeared to regulate neurotransmitter release through reinforcement of interactions between Syntaxin-binding protein and Syntaxin, a SNARE protein. In conclusion, PTPRT regulates synaptic function and neuronal development through interactions with neuronal adhesion molecules and the dephosphorylation of synaptic molecules. [BMB Reports 2015; 48(5): 249-255]

miR-485 Acts as a Tumor Suppressor by Inhibiting Cell Growth and Migration in Breast Carcinoma T47D Cells

  • Anaya-Ruiz, Maricruz;Bandala, Cindy;Perez-Santos, Jose Luis Martin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3757-3760
    • /
    • 2013
  • MicroRNAs (miRNAs) are small, non-coding RNAs (18-25 nucleotides) that post-transcriptionally modulate gene expression by negatively regulating the stability or translational efficiency of their target mRNAs. In this context, the present study aimed to evaluate the in vitro effects of miR-485 mimics in breast carcinoma T47D cells. Forty-eight hours after T47D cells were transfected with miR-485 mimics, an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was utilized to determine the effects on cell viability. Colony formation and cell migration assays were adopted to determine whether miR-485 affects the proliferation rates and cell migration of breast carcinoma T47D cells. Our results showed that ectopic expression of miR-485 resulted in a significant decrease in cell growth, cell colony formation, and cell migration. These findings suggest that miR-485 might play an important role in breast cancer by suppressing cell proliferation and migration.

Stem cell maintenance by manipulating signaling pathways: past, current and future

  • Chen, Xi;Ye, Shoudong;Ying, Qi-Long
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.668-676
    • /
    • 2015
  • Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways.

Local protein synthesis in neuronal axons: why and how we study

  • Kim, Eunjin;Jung, Hosung
    • BMB Reports
    • /
    • 제48권3호
    • /
    • pp.139-146
    • /
    • 2015
  • Adaptive brain function and synaptic plasticity rely on dynamic regulation of local proteome. One way for the neuron to introduce new proteins to the axon terminal is to transport those from the cell body, which had long been thought as the only source of axonal proteins. Another way, which is the topic of this review, is synthesizing proteins on site by local mRNA translation. Recent evidence indicates that the axon stores a reservoir of translationally silent mRNAs and regulates their expression solely by translational control. Different stimuli to axons, such as guidance cues, growth factors, and nerve injury, promote translation of selective mRNAs, a process required for the axon's ability to respond to these cues. One of the critical questions in the field of axonal protein synthesis is how mRNA-specific local translation is regulated by extracellular cues. Here, we review current experimental techniques that can be used to answer this question. Furthermore, we discuss how new technologies can help us understand what biological processes are regulated by axonal protein synthesis in vivo.