Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.5.077

SERCA2a: a prime target for modulation of cardiac contractility during heart failure  

Park, Woo Jin (Global Research Laboratory and College of Life Sciences, Gwangju Institute of Science and Technology)
Oh, Jae Gyun (Global Research Laboratory and College of Life Sciences, Gwangju Institute of Science and Technology)
Publication Information
BMB Reports / v.46, no.5, 2013 , pp. 237-243 More about this Journal
Abstract
Heart failure is one of the leading causes of sudden death in developed countries. While current therapies are mostly aimed at mitigating associated symptoms, novel therapies targeting the subcellular mechanisms underlying heart failure are emerging. Failing hearts are characterized by reduced contractile properties caused by impaired $Ca^{2+}$ cycling between the sarcoplasm and sarcoplasmic reticulum (SR). Sarcoplasmic/endoplasmic reticulum $Ca^{2+}$ ATPase 2a (SERCA2a) mediates $Ca^{2+}$ reuptake into the SR in cardiomyocytes. Of note, the expression level and/or activity of SERCA2a, translating to the quantity of SR $Ca^{2+}$ uptake, are significantly reduced in failing hearts. Normalization of the SERCA2a expression level by gene delivery has been shown to restore hampered cardiac functions and ameliorate associated symptoms in pre-clinical as well as clinical studies. SERCA2a activity can be regulated at multiple levels of a signaling cascade comprised of phospholamban, protein phosphatase 1, inhibitor-1, and $PKC{\alpha}$. SERCA2 activity is also regulated by post-translational modifications including SUMOylation and acetylation. In this review, we will highlight the molecular mechanisms underlying the regulation of SERCA2a activity and the potential therapeutic modalities for the treatment of heart failure.
Keywords
Inhibitor-1; Phospholamban; $PKC{\alpha}$; Protein phosphatase 1; SERCA2a;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Luo, W., Grupp, I. L., Harrer, J., Ponniah, S., Grupp, G., Duffy, J. J., Doetschman, T. and Kranias, E. G. (1994) Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ. Res. 75, 401-409.   DOI   ScienceOn
2 Luo, W., Wolska, B. M., Grupp, I. L., Harrer, J. M., Haghighi, K., Ferguson, D. G., Slack, J. P., Grupp, G., Doetschman, T., Solaro, R. J. and Kranias, E. G. (1996) Phospholamban gene dosage effects in the mammalian heart. Circ. Res. 78, 839-847.   DOI   ScienceOn
3 MacDougall, L. K., Jones, L. R. and Cohen, P. (1991) Identification of the major protein phosphatases in mammalian cardiac muscle which dephosphorylate phospholamban. Eur. J. Biochem. 196, 725-734.   DOI   ScienceOn
4 Gwathmey, J. K., Copelas, L., MacKinnon, R., Schoen, F. J., Feldman, M. D., Grossman, W. and Morgan, J. P. (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ. Res. 61, 70-76.   DOI   ScienceOn
5 Haghighi, K., Kolokathis, F., Pater, L., Lynch, R. A., Asahi, M., Gramolini, A. O., Fan, G. C., Tsiapras, D., Hahn, H. S., Adamopoulos, S., Liggett, S. B., Dorn, G. W. 2nd, MacLennan, D. H., Kremastinos, D. T. and Kranias, E. G. (2003) Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Invest. 111, 869-876.   DOI   ScienceOn
6 Hajjar, R. J., Schmidt, U., Kang, J. X., Matsui, T. and Rosenzweig, A. (1997) Adenoviral gene transfer of phospholamban in isolated rat cardiomyocytes. Rescue effects by concomitant gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase. Circ. Res. 81, 145-153.   DOI   ScienceOn
7 Hajjar, R. J., Schmidt, U., Matsui, T., Guerrero, J. L., Lee, K. H., Gwathmey, J. K., Dec, G. W., Semigran, M. J. and Rosenzweig, A. (1998) Modulation of ventricular function through gene transfer in vivo. Proc. Natl. Acad. Sci.U.S.A. 95, 5251-5256.   DOI
8 Hambleton, M., Hahn, H., Pleger, S. T., Kuhn, M. C., Klevitsky, R., Carr, A. N., Kimball, T. F., Hewett, T. E., Dorn, G. W. 2nd, Koch, W. J. and Molkentin, J. D. (2006) Pharmacological- and gene therapy-based inhibition of protein kinase Calpha/beta enhances cardiac contractility and attenuates heart failure. Circulation 114, 574-582.   DOI   ScienceOn
9 Nicolaou, P., Rodriguez, P., Ren, X., Zhou, X., Qian, J., Sadayappan, S., Mitton, B., Pathak, A., Robbins, J., Hajjar, R. J., Jones, K. and Kranias, E. G. (2009) Inducible expression of active protein phosphatase-1 inhibitor-1 en hances basal cardiac function and protects against ischemia/ reperfusion injury. Circ. Res. 104, 1012-1020.   DOI   ScienceOn
10 Oh, J. G., Kim, J., Jang, S. P., Nguen, M., Yang, D. K., Jeong, D., Park, Z. Y., Park, S. G., Hajjar, R. J. and Park, W. J. (2013) Decoy peptides targeted to protein phosphatase 1 inhibit dephosphorylation of phospholamban in cardiomyocytes. J. Mol. Cell Cardiol. 56, 63-71.   DOI   ScienceOn
11 Pathak, A., del Monte, F., Zhao, W., Schultz, J. E., Lorenz, J. N., Bodi, I., Weiser, D., Hahn, H., Carr, A. N., Syed, F., Mavila, N., Jha, L., Qian, J., Marreez, Y., Chen, G., McGraw, D. W., Heist, E. K., Guerrero, J. L., DePaoli-Roach, A. A., Hajjar, R. J. and Kranias, E. G. (2005) Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ. Res. 96, 756-766.   DOI   ScienceOn
12 Periasamy, M., Reed, T. D., Liu, L. H., Ji, Y., Loukianov, E., Paul, R. J., Nieman, M. L., Riddle, T., Duffy, J. J., Doetschman, T., Lorenz, J. N. and Shull, G. E. (1999) Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J. Biol. Chem. 274, 2556-2562.   DOI   ScienceOn
13 Prunier, F., Kawase, Y., Gianni, D., Scapin, C., Danik, S. B., Ellinor, P. T., Hajjar, R. J. and Del Monte, F. (2008) Prevention of ventricular arrhythmias with sarcoplasmic reticulum Ca2+ ATPase pump overexpression in a porcine model of ischemia reperfusion. Circulation 118, 614-624.   DOI   ScienceOn
14 Kadambi, V. J., Ponniah, S., Harrer, J. M., Hoit, B. D., Dorn, G. W. 2nd, Walsh, R. A. and Kranias, E. G. (1996) Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J. Clin. Invest. 97, 533-539.   DOI
15 Yano, M., Yamamoto, T., Ikemoto, N. and Matsuzaki, M. (2005) Abnormal ryanodine receptor function in heart failure. Pharmacol. Ther. 107, 377-391.   DOI   ScienceOn
16 Rodriguez, P., Mitton, B., Nicolaou, P., Chen, G. and Kranias, E. G. (2007) Phosphorylation of human inhibitor- 1 at Ser67 and/or Thr75 attenuates stimulatory effects of protein kinase A signaling in cardiac myocytes. Am. J. Physiol. Heart. Circ. Physiol. 293, H762-769.   DOI   ScienceOn
17 Rodriguez, P., Mitton, B., Waggoner, J. R. and Kranias, E. G. (2006) Identification of a novel phosphorylation site in protein phosphatase inhibitor-1 as a negative regulator of cardiac function. J. Biol. Chem. 281, 38599-38608.   DOI   ScienceOn
18 Kawase, Y., Ly, H. Q., Prunier, F., Lebeche, D., Shi, Y., Jin, H., Hadri, L., Yoneyama, R., Hoshino, K., Takewa, Y., Sakata, S., Peluso, R., Zsebo, K., Gwathmey, J. K., Tardif, J. C., Tanguay, J. F. and Hajjar, R. J. (2008) Reversal of cardiac dysfunction after long- term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J. Am. Coll. Cardiol. 51, 1112-1119.   DOI   ScienceOn
19 Schultz Jel, J., Glascock, B. J., Witt, S. A., Nieman, M. L., Nattamai, K. J., Liu, L. H., Lorenz, J. N., Shull, G. E., Kimball, T. R. and Periasamy, M. (2004) Accelerated onset of heart failure in mice during pressure overload with chronically decreased SERCA2 calcium pump activity. Am. J. Physiol. Heart. Circ. Physiol. 286, H1146-1153.   DOI
20 Steenaart, N. A., Ganim, J. R., Di Salvo, J. and Kranias, E. G. (1992) The phospholamban phosphatase associated with cardiac sarcoplasmic reticulum is a type 1 enzyme. Arch. Biochem. Biophys. 293, 17-24.   DOI   ScienceOn
21 Mathers, C. D., Boerma, T. and Ma Fat, D. (2009) Global and regional causes of death. Br. Med. Bull. 92, 7-32.   DOI   ScienceOn
22 Mathers, C. D. and Loncar, D. (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3, e442.   DOI
23 Mercadier, J. J., Lompre, A. M., Duc, P., Boheler, K. R., Fraysse, J. B., Wisnewsky, C., Allen, P. D., Komajda, M. and Schwartz, K. (1990) Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J. Clin. Invest. 85, 305-309.   DOI   ScienceOn
24 Movsesian, M. A., Leveille, C., Krall, J., Colyer, J., Wang, J. H. and Campbell, K. P. (1990) Identification and characterization of proteins in sarcoplasmic reticulum from normal and failing human left ventricles. J. Mol. Cell Cardiol. 22, 1477-1485.   DOI   ScienceOn
25 Lehnart, S. E., Maier, L. S. and Hasenfuss, G. (2009) Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart. Fail. Rev. 14, 213-224.   DOI
26 Kho, C., Lee, A., Jeong, D., Oh, J. G., Chaanine, A. H., Kizana, E., Park, W. J. and Hajjar, R. J. (2011) SUMO1- dependent modulation of SERCA2a in heart failure. Nature 477, 601-605.   DOI   ScienceOn
27 Ladage, D., Tilemann, L., Ishikawa, K., Correll, R. N., Kawase, Y., Houser, S. R., Molkentin, J. D. and Hajjar, R. J. (2011) Inhibition of PKCalpha/beta with ruboxistaurin antagonizes heart failure in pigs after myocardial infarction injury. Circ. Res. 109, 1396-1400.   DOI   ScienceOn
28 Lehnart, S. E. (2007) Novel targets for treating heart and muscle disease: stabilizing ryanodine receptors and preventing intracellular calcium leak. Curr. Opin. Pharmacol. 7, 225-232.   DOI   ScienceOn
29 Limas, C. J., Olivari, M. T., Goldenberg, I. F., Levine, T. B., Benditt, D. G. and Simon, A. (1987) Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc Res. 21, 601-605.   DOI   ScienceOn
30 Liu, Q., Chen, X., Macdonnell, S. M., Kranias, E. G., Lorenz, J. N., Leitges, M., Houser, S. R. and Molkentin, J. D. (2009) Protein kinase C{alpha}, but not PKC{beta} or PKC{gamma}, regulates contractility and heart failure susceptibility: implications for ruboxistaurin as a novel therapeutic approach. Circ. Res. 105, 194-200.   DOI   ScienceOn
31 Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T. and Murray, C. J. (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367, 1747-1757.   DOI   ScienceOn
32 El-Armouche, A., Rau, T., Zolk, O., Ditz, D., Pamminger, T., Zimmermann, W. H., Jäckel, E., Harding, S. E., Boknik, P., Neumann, J. and Eschenhagen, T. (2003) Evidence for protein phosphatase inhibitor-1 playing an amplifier role in beta-adrenergic signaling in cardiac myocytes. FASEB J. 17, 437-439.
33 Neumann, J., Eschenhagen, T., Jones, L. R., Linck, B., Schmitz, W., Scholz, H. and Zimmermann, N. (1997) Increased expression of cardiac phosphatases in patients with end-stage heart failure. J. Mol. Cell Cardiol. 29, 265-272.   DOI   ScienceOn
34 Neumann, J. Gupta, R. C., Schmitz, W., Scholz, H., Nairn, A. C. and Watanabe, A. M. (1991) Evidence for isoproterenol-induced phosphorylation of phosphatase inhibitor-1 in the intact heart. Circ. Res. 69, 1450-1457.   DOI   ScienceOn
35 Carr, A. N., Schmidt, A. G., Suzuki, Y., del Monte, F., Sato, Y., Lanner, C., Breeden, K., Jing, S. L., Allen, P. B., Greengard, P., Yatani, A., Hoit, B. D., Grupp, I. L., Hajjar, R. J., DePaoli-Roach, A. A. and Kranias, E. G. (2002) Type 1 phosphatase, a negative regulator of cardiac function. Mol. Cell. Biol. 22, 4124-4135.   DOI
36 del Monte, F., Hajjar, R. J. and Harding, S. E. (2001) Overwhelming evidence of the beneficial effects of SERCA gene transfer in heart failure. Circ. Res. 88, E66-67.   DOI
37 del Monte, F., Harding, S. E., Schmidt, U., Matsui, T., Kang, Z. B., Dec, G. W., Gwathmey, J. K., Rosenzweig, A. and Hajjar, R. J. (1999) Restoration of contractile function in isolated cardiomyocytes from failing human hearts by gene transfer of SERCA2a. Circulation 100, 2308-2311.   DOI   ScienceOn
38 Endo, S., Zhou, X., Connor, J., Wang, B. and Shenolikar, S. (1996) Multiple structural elements define the specificity of recombinant human inhibitor-1 as a protein phosphatase-1 inhibitor. Biochemistry 35, 5220-5228.   DOI   ScienceOn
39 Gupta, R. C., Neumann, J., Watanabe, A. M., Lesch, M. and Sabbah, H. N. (1996) Evidence for presence and hormonal regulation of protein phosphatase inhibitor-1 in ventricular cardiomyocyte. Am. J. Physiol. 270, H1159-1164.
40 Jaski, B. E., Jessup, M. L., Mancini, D. M., Cappola, T. P., Pauly, D. F., Greenberg, B., Borow, K., Dittrich, H., Zsebo, K. M. and Hajjar, R. J. (2009) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J. Card. Fail. 15, 171-181.   DOI   ScienceOn
41 Jessup, M., Greenberg, B., Mancini, D., Cappola, T., Pauly, D. F., Jaski, B., Yaroshinsky, A., Zsebo, K. M., Dittrich, H. and Hajjar, R. J. (2011) Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124, 304-313.   DOI   ScienceOn
42 Ji, Y., Lalli, M. J., Babu, G. J., Xu, Y., Kirkpatrick, D. L., Liu, L. H., Chiamvimonvat, N., Walsh, R. A., Shull, G. E. and Periasamy, M. (2000) Disruption of a single copy of the SERCA2 gene results in altered Ca2+ homeostasis and cardiomyocyte function. J. Biol. Chem. 275, 38073-38080.   DOI   ScienceOn
43 Braz, J. C., Gregory, K., Pathak, A., Zhao, W., Sahin, B., Klevitsky, R., Kimball, T. F., Lorenz, J. N., Nairn, A. C., Liggett, S. B., Bodi, I., Wang, S., Schwartz, A., Lakatta, E. G., DePaoli-Roach, A. A., Robbins, J., Hewett, T. E., Bibb, J. A., Westfall, M. V., Kranias, E. G. and Molkentin, J. D. (2004) PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat. Med. 10, 248-254.   DOI   ScienceOn
44 Byrne, M. J., Power, J. M., Preovolos, A., Mariani, J. A., Hajjar, R. J. and Kaye, D. M. (2008) Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther. 15, 1550-1557.   DOI   ScienceOn
45 Houser, S. R., Piacentino, V. 3rd and Weisser, J. (2000) Abnormalities of calcium cycling in the hypertrophied and failing heart. J. Mol. Cell Cardiol. 32, 1595-1607.   DOI   ScienceOn
46 Hasenfuss, G., Reinecke, H., Studer, R., Meyer, M., Pieske, B., Holtz, J., Holubarsch, C., Posival, H., Just, H. and Drexler, H. (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ. Res. 75, 434-442.   DOI   ScienceOn