• Title/Summary/Keyword: Translational regulation

Search Result 183, Processing Time 0.023 seconds

The Role of Nuclear Receptor Subfamily 1 Group H Member 4 (NR1H4) in Colon Cancer Cell Survival through the Regulation of c-Myc Stability

  • Lee, Yun Jeong;Lee, Eun-Young;Choi, Bo Hee;Jang, Hyonchol;Myung, Jae-Kyung;You, Hye Jin
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.459-468
    • /
    • 2020
  • Nuclear receptor subfamily group H member 4 (NR1H4), also known as farnesoid X receptor, has been implicated in several cellular processes in the liver and intestine. Preclinical and clinical studies have suggested a role of NR1H4 in colon cancer development; however, how NR1H4 regulates colon cancer cell growth and survival remains unclear. We generated NR1H4 knockout (KO) colon cancer cells using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (CAS9) technology and explored the effects of NR1H4 KO in colon cancer cell proliferation, survival, and apoptosis. Interestingly, NR1H4 KO cells showed impaired cell proliferation, reduced colony formation, and increased apoptotic cell death compared to control colon cancer cells. We identified MYC as an important mediator of the signaling pathway alterations induced by NR1H4 KO. NR1H4 silencing in colon cancer cells resulted in reduced MYC protein levels, while NR1H4 activation using an NR1H4 ligand, chenodeoxycholic acid, resulted in time- and dose-dependent MYC induction. Moreover, NR1H4 KO enhanced the anti-cancer effects of doxorubicin and cisplatin, supporting the role of MYC in the enhanced apoptosis observed in NR1H4 KO cells. Taken together, our findings suggest that modulating NR1H4 activity in colon cancer cells might be a promising alternative approach to treat cancer using MYC-targeting agents.

TRAIL Mediated Signaling in Pancreatic Cancer

  • Nogueira, Daniele Rubert;Yaylim, Ilhan;Aamir, Qurratulain;Kahraman, OzlemTimirci;Fayyaz, Sundas;Naqvi, Syed Kamran-Ul-Hassan;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.5977-5982
    • /
    • 2014
  • Research over the years has progressively shown substantial broadening of the tumor necrosis factor alpha-related apoptosis-inducing ligand (TRAIL)-mediated signaling landscape. Increasingly it is being realized that pancreatic cancer is a multifaceted and genomically complex disease. Suppression of tumor suppressors, overexpression of oncogenes, epigenetic silencing, and loss of apoptosis are some of the extensively studied underlying mechanisms. Rapidly accumulating in vitro and in vivo evidence has started to shed light on the resistance mechanisms in pancreatic cancer cells. More interestingly a recent research has opened new horizons of miRNA regulation by DR5 in pancreatic cancer cells. It has been shown that DR5 interacts with the core microprocessor components Drosha and DGCR8, thus impairing processing of primary let-7. Xenografting DR5 silenced pancreatic cancer cells in SCID-mice indicated that there was notable suppression of tumor growth. There is a paradigm shift in our current understanding of TRAIL mediated signaling in pancreatic cancer cells that is now adding new layers of concepts into the existing scientific evidence. In this review we have attempted to provide an overview of recent advances in TRAIL mediated signaling in pancreatic cancer as evidenced by findings of in vitro and in vivo analyses. Furthermore, we discuss nanotechnological advances with emphasis on PEG-TRAIL and four-arm PEG cross-linked hyaluronic acid (HA) hydrogels to improve availability of TRAIL at target sites.

Regulation of HMG-CoA Reductase mRNA Stability by 25-hydroxycholesterol

  • Park, Jae-Won;Oh, Seung-Min
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.4
    • /
    • pp.184-188
    • /
    • 2000
  • HMG-CoA reductase is th rate-limiting enzyme of cholesterol biosynthesis. As intracellular levels of cholesterol should be regulated elaborately in response to external stimuli an internal needs, the expression of the HMG-CoA reductase gene is regulated intricately at several different levels from transcription to post-translational modification. In this study, we investigated the regulatory mechanism of HMG-CoA reductase gene expression at the post-transcriptional/pre-translational levels in a baby hamster kidney cell line, C100. when 25-hydroxycholesterol was added to cells cultured in medium containing 5% delipidized fetal bovine serum and 25$\mu$M lovastatin, the levels of HMG-CoA reductase mRNA decreased rapidly, which seemed to be due to the increased degradation of reductase mRNA. These suppressive effects of 25-hydroxycholesterol on MG-CoA reductase mRNA levels were blocked by a translation inhibitor, cycloheximide. Similarly, actinomycin D and 5,6-dichloro-1-$\beta$-D-ribofuranosylbenzimidazole, transcription inhibitors, blocked the 25-hydroxycholesterol-mediated degradation of HMG-CoA reductase mRNA. These results indicate that new protein/RNA synthesis is required for the degradation of HMG-CoA reductase mRNA. In addition, data from the transfection experiments shows that cis-acting determinants, regulating the stability of reductase mRNA, were scattered in the sequence corresponding to 1766-4313 based on the sequence of Syrian hamster HMG-CoA reductase cDNA. Our data suggests that sterol-mediated destabilization of reductase mRNA might be one of the important regulatory mechanism of HMG-CoA reductase gene expression.

  • PDF

Understanding of Drought Stress Signaling Network in Plants (식물의 물부족 스트레스 신호 전달 네트워크에 대한 이해)

  • Lee, Jae-Hoon
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.376-387
    • /
    • 2018
  • Among a variety of environmental stresses heat, cold, chilling, high salt, drought, and so on exposed to plants, drought stress has been reported as a crucial factor to adversely affect the growth and productivity of plants. Therefore, to understand the mechanism for the drought stress signal transduction pathway in plants is more helpful to develop useful crops that display the enhanced tolerance against drought stress, and to expand crop growing areas. The signal transduction pathway for the drought stress in plants is largely categorized into two types; ABA-dependent pathway and ABA-independent pathway. It has been reported that two transcription factors, AREB/ABF and DREB2, play predominant roles in ABA-dependent and ABA-independent pathways, respectively. In addition to transcriptional regulation mediated by AREB/ABF and DREB2 transcription factors, post-translational modification (such as phosphorylation and ubiquitination) and epigenetic control are importantly involved in the signal transduction for drought stress. In this paper, we review current understanding of signal transduction pathway on drought stress in plants, especially focusing on the biological roles of a variety of signaling components related to drought stress response. Further understanding the mechanism of drought resistance in plants through this review will be useful to establish theoretical basis for developing drought tolerant crops in the future.

Circadian Clock Genes, PER1 and PER2, as Tumor Suppressors (체내 시계 유전자 PER1과 PER2의 종양억제자 기능)

  • Son, Beomseok;Do, Hyunhee;Kim, EunGi;Youn, BuHyun;Kim, Wanyeon
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1225-1231
    • /
    • 2017
  • Disruptive expression patterns of the circadian clock genes are highly associated with many human diseases, including cancer. Cell cycle and proliferation is linked to a circadian rhythm; therefore, abnormal clock gene expression could result in tumorigenesis and malignant development. The molecular network of the circadian clock is based on transcriptional and translational feedback loops orchestrated by a variety of clock activators and clock repressors. The expression of 10~15% of the genome is controlled by the overall balance of circadian oscillation. Among the many clock genes, Period 1 (Per1) and Period 2 (Per2) are clock repressor genes that play an important role in the regulation of normal physiological rhythms. It has been reported that PER1 and PER2 are involved in the expression of cell cycle regulators including cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors. In addition, correlation of the down-regulation of PER1 and PER2 with development of many cancer types has been revealed. In this review, we focused on the molecular function of PER1 and PER2 in the circadian clock network and the transcriptional and translational targets of PER1 and PER2 involved in cell cycle and tumorigenesis. Moreover, we provide information suggesting that PER1 and PER2 could be promising therapeutic targets for cancer therapies and serve as potential prognostic markers for certain types of human cancers.

Telomerase Activity is Constitutively Expressed in the Murine $CD8^+$ T Cells and Controlled Transcriptionally and Post-Translationally

  • Kim, SoJung;Kim, MiHyung;Kim, KilHyoun
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.166-175
    • /
    • 2004
  • Background: Telomerase, a ribonucleoprotein enzyme capable of synthesizing telomeric repeats, attracts attention for its possible role in determining the replicative capacity of normal somatic cells, transformed cells, and cells of the germline lineage. Differently from normal somatic cells with no telomerase activity, normal lymphocytes has been reported to have telomerase activity comparable to that found in transformed cells during development and activation, which substantiate a role in supporting the capacity of lymphocytes for extensive clonal expansion. Methods: Here, in order to define the telomerase regulation in murine T lymphocytes, telomerase activity in cloned murine $CD8^+$ T cells and naive $CD8^+$ T cells isolated from C57BL/6 mice was examined. Next, the regulatory mechanism of telomerase activity at transcriptional and post- translational levels was investigated by determining the expression level of the TERT protein, a key component for telomerase activity. Results: It was demonstrated that telomerase activity was expressed in an inactivated state as well as in an activated state in the murine $CD8^+$ T lymphocytes by using TRAP assay. The increase of telomerase activity was partially dependent on the net increase of TERT expression. Also, telomerase activity was decreased after treatment with protein kinase inhibitors, indicating that telomerase activation was prevented by inhibition of phosphorylation. Conclusion: Therefore, these results suggest that telomerase activity is constitutively expressed in the murine resting T lymphocytes and controlled by both transcriptional regulation and post- ranslational modifications.

MicroRNAs and Metastasis-related Gene Expression in Egyptian Breast Cancer Patients

  • Hafez, Mohamed M.;Hassan, Zeinab K.;Zekri, Abdel Rahman N.;Gaber, Ayman A.;Rejaie, Salem S. Al;Sayed-Ahmed, Mohamed M.;Shabanah, Othman Al
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.591-598
    • /
    • 2012
  • Aim and background: MicroRNAs (miRNAs) are a class of naturally occurring small noncoding RNAs that regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or cleavage. The present study was conducted to study miRNAs in Egyptian breast cancer (BC) and their relation to metastasis, tumor invasion and apoptosis in addition to their association with the ER and PR statuses. Methods: Real Time RT-PCR was performed to identify the miRNA expression level of eight miRNAs and eight metastatic-related genes in 40 breast cancer samples and their adjacent non-neoplastic tissues. The expression levels of each miRNA relative to U6 RNA were determined using the $^{2-{\Delta}}CT$ method. Also, miRNA expression profiles of the BC and their corresponding ANT were evaluated. Results: The BC patients showed an up-regulation in miRNAs (mir-155, mir-10, mir-21 and mir-373) with an upregulation in MMP2, MMp9 and VEGF genes. We found down regulation in mir-17p, mir-126, mir-335, mir-30b and also TIMP3, TMP1 and PDCD4 genes in the cancer tissue compared to the adjacent non-neoplastic tissues. Mir -10b, mir -21, mir-155 and mir373 and the metastatic genes MMP2, MMP9 and VEGF were significantly associated with an increase in tumor size (P < 0.05). No significant difference was observed between any of the studied miRNAs regarding lymph node metastasis. Mir-21 was significantly over-expressed in ER-/PR-cases. Conclusion: Specific miRNAs (mir-10, mir-21, mir-155, mir-373, mir-30b, mir-126, mir-17p, mir-335) are associated with tumor metastasis and other clinical characteristics for BC, facilitating identification of individuals who are at risk.

Regulation of the Gene Encoding Glutathione Synthetase from the Fission Yeast

  • Kim, Su-Jung;Shin, Youn-Hee;Kim, Kyung-Hoon;Park, Eun-Hee;Sa, Jae-Hoon;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.326-331
    • /
    • 2003
  • The fission yeast cells that contained the cloned glutathione synthetase (GS) gene showed 1.4-fold higher glutathione (GSB) content and 1.9-fold higher GS activity than the cells without the cloned GS gene. Interestingly, $\gamma$-glutamylcysteine synthetase activity increased 2.1-fold in the S. pombe cells that contained the cloned GS gene. The S. pombe cells that harbored the multi copy-number plasmid pRGS49 (containing the cloned GS gene) showed a higher level of survival on solid media with cadmium chloride (1 mM) or mercuric chloride ($10\;{\mu}M$) than the cells that harbored the YEp357R vector. The 506 bp upstream sequence from the translational initiation point and N-terminal8 amino acid-coding region were fused into the promoteriess $\beta$-galactosidase gene of the shuttle vector YEp367R to generate the fusion plasmid pUGS39. Synthesis of $\beta$-galactosidase from the fusion plasmid pUGS39 was significantly enhanced by cadmium chloride and NO-generating S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SN). It was also induced by L-buthionine-(S,R)-sulfoximine, a specific inhibitor of $\gamma$-glutamylcysteine synthetase (GCS). We also found that the expression of the S. pombe GS gene is regulated by the Atf1-Spc1-Wis1 signal pathway.

Expression of MiR200a, miR93, Metastasis-related Gene RECK and MMP2/MMP9 in Human Cervical Carcinoma - Relationship with Prognosis

  • Wang, Ling;Wang, Qiang;Li, He-Lian;Han, Li-Ying
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.2113-2118
    • /
    • 2013
  • Aim and Background: Cervical cancer remains the third most common cancer in women globally after breast and colorectal cancer. Well-characterized biomarkers are necessary for early diagnosis and to predict metastatic progression and effective therapy. MiRNAs can regulate gene expression, cell growth, differentiation and apoptosis by targeting mRNAs for translational repression or degradation in tumor cells. The present study was conducted to assess expression of miR93, miR200a, RECK, MMP2, MMP9 in invasive cervical carcinoma, and analyze their clinical significance. Method: A total of 116 patients with invasive cervical carcinoma and 100 patients undergoing hysterectomy for benign lesions were retrospectively examined. Quantitative real-time PCR was performed to determine expression of miR93 and miR200a while RECK, MMP2, MMP9 and MVD were assessed by immunohistochemical staining. Results: Cervical carcinoma patients demonstrated up-regulation of miR-93, miR-200a, MMP2 and MMP9, with down-regulation of RECK as compared to benign lesion tissues. RECK was significantly inversely related to invasion and lymphatic metastasis. The 5-year survival rate for patients with strong RECK expression was significantly higher than that with weakly expressing tumors. Conclusion: MiR-93 and miR-200a are associated with metastasis and invasion of cervical carcinoma. Thus together with RECK they are potential prognostic markers for cervical carcinoma. RECK cooperating with MMP2, MMP9 expression is a significant prognostic factor correlated with long-term survival for patients with invasive cervical carcinoma.

Nutlin-3 downregulates p53 phosphorylation on serine392 and induces apoptosis in hepatocellular carcinoma cells

  • Shi, Xinli;Liu, Jingli;Ren, Laifeng;Mao, Nan;Tan, Fang;Ding, Nana;Yang, Jing;Li, Mingyuan
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.221-226
    • /
    • 2014
  • Drug-resistance and imbalance of apoptotic regulation limit chemotherapy clinical application for the human hepatocellular carcinoma (HCC) treatment. The reactivation of p53 is an attractive therapeutic strategy in cancer with disrupted-p53 function. Nutlin-3, a MDM2 antagonist, has antitumor activity in various cancers. The post-translational modifications of p53 are a hot topic, but there are some controversy ideas about the function of phospho-$Ser^{392}$-p53 protein in cancer cell lines in response to Nutlin-3. Therefore, we investigated the relationship between Nutlin-3 and phospho-$Ser^{392}$-p53 protein expression levels in SMMC-7721 (wild-type TP53) and HuH-7 cells (mutant TP53). We demonstrated that Nutlin-3 induced apoptosis through down-regulation phospho-$Ser^{392}$-p53 in two HCC cells. The result suggests that inhibition of p53 phosphorylation on $Ser^{392}$ presents an alternative for HCC chemotherapy.