Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0041

The Role of Nuclear Receptor Subfamily 1 Group H Member 4 (NR1H4) in Colon Cancer Cell Survival through the Regulation of c-Myc Stability  

Lee, Yun Jeong (Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center)
Lee, Eun-Young (Division of Translational Science, Research Institute, National Cancer Center)
Choi, Bo Hee (Division of Translational Science, Research Institute, National Cancer Center)
Jang, Hyonchol (Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center)
Myung, Jae-Kyung (Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center)
You, Hye Jin (Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center)
Abstract
Nuclear receptor subfamily group H member 4 (NR1H4), also known as farnesoid X receptor, has been implicated in several cellular processes in the liver and intestine. Preclinical and clinical studies have suggested a role of NR1H4 in colon cancer development; however, how NR1H4 regulates colon cancer cell growth and survival remains unclear. We generated NR1H4 knockout (KO) colon cancer cells using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (CAS9) technology and explored the effects of NR1H4 KO in colon cancer cell proliferation, survival, and apoptosis. Interestingly, NR1H4 KO cells showed impaired cell proliferation, reduced colony formation, and increased apoptotic cell death compared to control colon cancer cells. We identified MYC as an important mediator of the signaling pathway alterations induced by NR1H4 KO. NR1H4 silencing in colon cancer cells resulted in reduced MYC protein levels, while NR1H4 activation using an NR1H4 ligand, chenodeoxycholic acid, resulted in time- and dose-dependent MYC induction. Moreover, NR1H4 KO enhanced the anti-cancer effects of doxorubicin and cisplatin, supporting the role of MYC in the enhanced apoptosis observed in NR1H4 KO cells. Taken together, our findings suggest that modulating NR1H4 activity in colon cancer cells might be a promising alternative approach to treat cancer using MYC-targeting agents.
Keywords
colon cancer; Myc; NR1H4; signaling;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Leonetti, C., Biroccio, A., Candiloro, A., Citro, G., Fornari, C., Mottolese, M., Del Bufalo, D., and Zupi, G. (1999). Increase of cisplatin sensitivity by c-myc antisense oligodeoxynucleotides in a human metastatic melanoma inherently resistant to cisplatin. Clin. Cancer Res. 5, 2588-2595.
2 Luengo, A., Gui, D.Y., and Vander Heiden, M.G. (2017). Targeting metabolism for cancer therapy. Cell Chem. Biol. 24, 1161-1180.   DOI
3 Maran, R.R., Thomas, A., Roth, M., Sheng, Z., Esterly, N., Pinson, D., Gao, X., Zhang, Y., Ganapathy, V., Gonzalez, F.J., et al. (2009). Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development. J. Pharmacol. Exp. Ther. 328, 469-477.   DOI
4 Jo, M.J., Paek, A.R., Choi, J.S., Ok, C.Y., Jeong, K.C., Lim, J.H., Kim, S.H., and You, H.J. (2015). Regulation of cancer cell death by a novel compound, C604, in a c-Myc-overexpressing cellular environment. Eur. J. Pharmacol. 769, 257-265.   DOI
5 Kazi, A., Xiang, S., Yang, H., Delitto, D., Trevino, J., Jiang, R.H.Y., Ayaz, M., Lawrence, H.R., Kennedy, P., and Sebti, S.M. (2018). GSK3 suppression upregulates beta-catenin and c-Myc to abrogate KRas-dependent tumors. Nat. Commun. 9, 5154.   DOI
6 Klag, T., Thomas, M., Ehmann, D., Courth, L., Mailander-Sanchez, D., Weiss, T.S., Dayoub, R., Abshagen, K., Vollmar, B., Thasler, W.E., et al. (2018). Beta-defensin 1 is prominent in the liver and induced during cholestasis by bilirubin and bile acids via farnesoid X receptor and constitutive androstane receptor. Front. Immunol. 9, 1735.   DOI
7 Kong, B., Zhu, Y., Li, G., Williams, J.A., Buckley, K., Tawfik, O., Luyendyk, J.P., and Guo, G.L. (2016). Mice with hepatocyte-specific FXR deficiency are resistant to spontaneous but susceptible to cholic acid-induced hepatocarcinogenesis. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G295-G302.   DOI
8 Okuyama, H., Endo, H., Akashika, T., Kato, K., and Inoue, M. (2010). Downregulation of c-MYC protein levels contributes to cancer cell survival under dual deficiency of oxygen and glucose. Cancer Res. 70, 10213-10223.   DOI
9 Nagarajan, A., Malvi, P., and Wajapeyee, N. (2016). Oncogene-directed alterations in cancer cell metabolism. Trends Cancer 2, 365-377.   DOI
10 Okita, A., Takahashi, S., Ouchi, K., Inoue, M., Watanabe, M., Endo, M., Honda, H., Yamada, Y., and Ishioka, C. (2018). Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget 9, 18698-18711.   DOI
11 Ortmayr, K., Dubuis, S., and Zampieri, M. (2019). Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism. Nat. Commun. 10, 1841.   DOI
12 Rahl, P.B., Lin, C.Y., Seila, A.C., Flynn, R.A., McCuine, S., Burge, C.B., Sharp, P.A., and Young, R.A. (2010). c-Myc regulates transcriptional pause release. Cell 141, 432-445.   DOI
13 Sarosiek, K.A., Fraser, C., Muthalagu, N., Bhola, P.D., Chang, W., McBrayer, S.K., Cantlon, A., Fisch, S., Golomb-Mello, G., Ryan, J.A., et al. (2017). Developmental regulation of mitochondrial apoptosis by c-Myc governs age- and tissue-specific sensitivity to cancer therapeutics. Cancer Cell 31, 142-156.   DOI
14 Satoh, K., Yachida, S., Sugimoto, M., Oshima, M., Nakagawa, T., Akamoto, S., Tabata, S., Saitoh, K., Kato, K., Sato, S., et al. (2017). Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc. Natl. Acad. Sci. U. S. A. 114, E7697-E7706.   DOI
15 Soucek, L., Whitfield, J., Martins, C.P., Finch, A.J., Murphy, D.J., Sodir, N.M., Karnezis, A.N., Swigart, L.B., Nasi, S., and Evan, G.I. (2008). Modelling Myc inhibition as a cancer therapy. Nature 455, 679-683.   DOI
16 Kuipers, E.J., Grady, W.M., Lieberman, D., Seufferlein, T., Sung, J.J., Boelens, P.G., van de Velde, C.J., and Watanabe, T. (2015). Colorectal cancer. Nat. Rev. Dis. Primers 1, 15065.   DOI
17 Lajczak, N.K., Saint-Criq, V., O'Dwyer, A.M., Perino, A., Adorini, L., Schoonjans, K., and Keely, S.J. (2017). Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human beta-defensin-1 and -2 secretion by colonic epithelial cells. FASEB J. 31, 3848-3857.   DOI
18 Hsieh, A.L., Walton, Z.E., Altman, B.J., Stine, Z.E., and Dang, C.V. (2015). MYC and metabolism on the path to cancer. Semin. Cell Dev. Biol. 43, 11-21.   DOI
19 Sears, R., Nuckolls, F., Haura, E., Taya, Y., Tamai, K., and Nevins, J.R. (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501-2514.   DOI
20 Smith, D.R., Myint, T., and Goh, H.S. (1993). Over-expression of the c-myc proto-oncogene in colorectal carcinoma. Br. J. Cancer 68, 407-413.   DOI
21 Stine, Z.E., Walton, Z.E., Altman, B.J., Hsieh, A.L., and Dang, C.V. (2015). MYC, metabolism, and cancer. Cancer Discov. 5, 1024-1039.   DOI
22 Sveen, A., Bruun, J., Eide, P.W., Eilertsen, I.A., Ramirez, L., Murumagi, A., Arjama, M., Danielsen, S.A., Kryeziu, K., Elez, E., et al. (2018). Colorectal cancer consensus molecular subtypes translated to preclinical models uncover potentially targetable cancer cell dependencies. Clin. Cancer Res. 24, 794-806.   DOI
23 Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308.   DOI
24 Takahashi, S., Tanaka, N., Fukami, T., Xie, C., Yagai, T., Kim, D., Velenosi, T.J., Yan, T., Krausz, K.W., Levi, M., et al. (2018). Role of farnesoid X receptor and bile acids in hepatic tumor development. Hepatol. Commun. 2, 1567-1582.   DOI
25 Dang, C.V. (2012). MYC on the path to cancer. Cell 149, 22-35.   DOI
26 Cancer Genome Atlas Network. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337.   DOI
27 Altman, B.J., Hsieh, A.L., Sengupta, A., Krishnanaiah, S.Y., Stine, Z.E., Walton, Z.E., Gouw, A.M., Venkataraman, A., Li, B., Goraksha-Hicks, P., et al. (2015). MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab. 22, 1009-1019.   DOI
28 Bailey, A.M., Zhan, L., Maru, D., Shureiqi, I., Pickering, C.R., Kiriakova, G., Izzo, J., He, N., Wei, C., Baladandayuthapani, V., et al. (2014). FXR silencing in human colon cancer by DNA methylation and KRAS signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G48-G58.   DOI
29 Bonamy, C., Sechet, E., Amiot, A., Alam, A., Mourez, M., Fraisse, L., Sansonetti, P.J., and Sperandio, B. (2018). Expression of the human antimicrobial peptide beta-defensin-1 is repressed by the EGFR-ERK-MYC axis in colonic epithelial cells. Sci. Rep. 8, 18043.   DOI
30 Cao, Z., Fan-Minogue, H., Bellovin, D.I., Yevtodiyenko, A., Arzeno, J., Yang, Q., Gambhir, S.S., and Felsher, D.W. (2011). MYC phosphorylation, activation, and tumorigenic potential in hepatocellular carcinoma are regulated by HMG-CoA reductase. Cancer Res. 71, 2286-2297.   DOI
31 Chen, H., Liu, H., and Qing, G. (2018). Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther. 3, 5.   DOI
32 Conacci-Sorrell, M., McFerrin, L., and Eisenman, R.N. (2014). An overview of MYC and its interactome. Cold Spring Harb. Perspect. Med. 4, a014357.   DOI
33 Degirolamo, C., Modica, S., Palasciano, G., and Moschetta, A. (2011). Bile acids and colon cancer: solving the puzzle with nuclear receptors. Trends Mol. Med. 17, 564-572.   DOI
34 Date, Y. and Ito, K. (2020). Oncogenic RUNX3: a link between p53 deficiency and MYC dysregulation. Mol. Cells 43, 176-181.   DOI
35 de Aguiar Vallim, T.Q., Tarling, E.J., and Edwards, P.A. (2013). Pleiotropic roles of bile acids in metabolism. Cell Metab. 17, 657-669.   DOI
36 DeBerardinis, R.J. and Chandel, N.S. (2016). Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200.   DOI
37 Frenzel, A., Zirath, H., Vita, M., Albihn, A., and Henriksson, M.A. (2011). Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression. PLoS One 6, e27988.   DOI
38 Fu, T., Coulter, S., Yoshihara, E., Oh, T.G., Fang, S., Cayabyab, F., Zhu, Q., Zhang, T., Leblanc, M., Liu, S., et al. (2019). FXR regulates intestinal cancer stem cell proliferation. Cell 176, 1098-1112.e18.   DOI
39 Gomez-Ospina, N., Potter, C.J., Xiao, R., Manickam, K., Kim, M.S., Kim, K.H., Shneider, B.L., Picarsic, J.L., Jacobson, T.A., Zhang, J., et al. (2016). Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat. Commun. 7, 10713.   DOI
40 Garcia-Gutierrez, L., Delgado, M.D., and Leon, J. (2019). MYC oncogene contributions to release of cell cycle brakes. Genes (Basel) 10, 244.   DOI
41 Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., Marisa, L., Roepman, P., Nyamundanda, G., Angelino, P., et al. (2015). The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350-1356.   DOI
42 Houlston, R.S. (2001). What we could do now: molecular pathology of colorectal cancer. Mol. Pathol. 54, 206-214.   DOI