• Title/Summary/Keyword: Transition layer

Search Result 642, Processing Time 0.027 seconds

Sl Transitions in BSCCO Mixed Crystal Thin Films

  • Ahn, Joon-Ho;Yi, Keon-Young;Park, Yong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.20-23
    • /
    • 2002
  • Temperature (T) dependence of the sheet resistance (R$\_$$\square$/) has been investigated an the c-axis oriented thin films of the (Bi2212/Bi2201) mixed crystal with different molar fractions. The R$\_$$\square$/-T superconducting characteristic deteriorated with reduction of the Bi2212 fraction, and almost disappears at 48 mol% where a superconductor-to-insulator transition too k place, with the resistance on the normal state, R$\_$N/, reaching 4.1 kΩka at 80 K. This R$\_$$\square$/ value is close to the universal quantum number, h/(2e)$_2$≡ 6.5 kΩ predicted by the Kosterlitz-Thouless (KT) transition theory. The R$\_$$\square$/-T characteristics of the 48 mol% thin film can be elucidated as a competitive process of KT transition brought about by charge or vortex in the two-dimensional layer structure.

Fabrication of Superconducting Transition Edge Sensors based on Ti/Au Bilayer Formation (Ti/Au 이중층을 이용한 초전도 상전이 센서 제작)

  • Lee, Young-Hwa;Kim, Yong-Hamb
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.943-949
    • /
    • 2008
  • We report on the development of transition edge sensors for x-ray detection. The sensor technology was based on the fabrication of a superconducting film on a thin membrane. A bilayer of a superconductor, Ti, and a noble metal, Au, was e-beam evaporated on a micromachined SiNx. Another Au layer was evaporated on the two side edges of the bilayer in order not to be affected by structural imperfections at the boundaries. With the method described in the present report, the superconducting transition temperature of the device was consistently achieved to near 80 mK with a sharp transition. The energy spectrum ueasured with the device provided 37 eV FWHM for 5.9 x-rays. We also discuss the design and fabrication considerations as well as the performance of the device in detail.

Mechanism of Morphological Transition from Lamellar/Perforated Layer to Gyroid Phases

  • Ahn, Jong-Hyun;Zin, Wang-Cheol
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.152-156
    • /
    • 2003
  • We investigated epitaxial relations of phase transitions between the lamellar (L), hexagonally perforated layers (HPL), and gyroid (G) morphologies in styrene-isoprene diblock copolymer (PSI) and polyisoprene (PI)/PSI blend using rheology and small angle X-ray scattering (SAXS) techniques. In HPLlongrightarrowG transitions, six spot patterns of G phase were observed in two-dimensitional SAXS pattern. On the other hand, in direct L-longrightarrowG transition without appearance of HPL phase, the polydomain patterns of G phase were observed. From present study, it was understood that direct LlongrightarrowG transition of blend may be suppressed by high-energy barrier of transition and mismatches in domain orientation between epitaxially related lattice planes.

The Preparation of Non-aqueous Supercapacitors with Lithium Transition-Metal Oxide/Activated Carbon Composite Positive Electrodes

  • Kim, Kyoung-Ho;Kim, Min-Soo;Yeu, Tae-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3183-3189
    • /
    • 2010
  • In order to increase the specific capacitance and energy density of supercapacitors, non-aqueous supercapacitors were prepared using lithium transition-metal oxides and activated carbons as active materials. The electrochemical properties were analyzed in terms of the content of lithium transition-metal oxides. The results of cyclic voltammetry and AC-impedance analyses showed that the pseudocapacitance may stem from the synergistic contributions of capacitive and faradic effects; the former is due to the electric double layer which is prepared in the interface of activated carbon and organic electrolyte, and the latter is due to the intercalation of lithium ($Li^+$) ions. The specific capacitance and energy density of a supercapacitor improved as the lithium transition-metal oxides content increased, showing 60% increase compared to those of supercapacitor using a pure activated carbon positive electrode.

Evaluation of Filter Capacity for Sea Dyke Slope Filter Layer by In-situ Rainfall Test (현장 강우재현시험을 통한 방조제 사면필터층의 필터성능분석)

  • Oh, Young-In;Kim, Seo-Ryong;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.828-837
    • /
    • 2006
  • Geotextiles consist of three major types of geosynthetic material (woven, non-woven and composite) and the functions of geotextiles are separation, reinforcement, filtration, drainage and as a moisture barrier. Although the many research scholar and engineer developed and established the design criteria and construction methodology, sustainable research still needed for optimum design methodology to the complicate field conditions. In this study, in-situ rainfall test performed to develop suitable filter system for sea dyke upper slope filter layer. In-situ rainfall test conducted for seven different filter system and measured the infiltration flux and pore pressure at various filter layer. Based on the test results, the double layered geotextile filter and sand transition system is most suitable for sea dyke upper filter layer because which system is effective for drainage of infiltration flow and minimize the deformation of sea dyke cover stone.

  • PDF

Wake-Induced Boundary Layer Transition on an Airfoil at Moderate Free-Stream Turbulence (자유유동 난류강도에 따른 익형 위 후류유도 경계층 천이의 거동)

  • Park, Tae-Choon;Kang, Shin-Hyoung;Jeon, Woo-Pyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.921-928
    • /
    • 2006
  • Wake-induced boundary-layer transition on a NACA0012 airfoil with zero angle of attack is experimentally investigated in periodically passing wakes under the moderate level of free-stream turbulence. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The free-stream turbulence is produced by a grid upstream of the rotating cylinder, and its intensities $(Tu_{\infty})$ at the leading edge of the airfoil are 0.5 and 3.5%, respectively. The Reynolds number (Rec) based on chord length (C) of the airfoil is $2.0{\times}10^5$, and Strouhal number (Stc) of the passing wake is about 1.4. Time- and phase-averaged streamwise mean velocities and turbulence fluctuations are measured with a single hot-wire probe, and especially, the corresponding wall skin friction is evaluated using a computational Preston tube method. The patch under the high free-stream turbulence $(Tu_{\infty}=3.5%)$ grows more greatly in laminar-like regions compared with that under the low turbulence $(Tu_{\infty}=0.5%)$ in laminar regions. The former, however, does not greatly change the turbulence level in very near-wall region while the latter does it. At further downstream, the former interacts vigorously with high environmental turbulence inside the pre-existing transitional boundary layer and gradually loses its identification, whereas the latter keeps growing in the laminar boundary layer. The calmed region is more clearly observed under the lower free-stream turbulence level and with the receding wakes.

TCC behavior of a shell phase in core/shell structure formed in Y-doped BaTiO3: an individual observation (Yttrium이 첨가된 BaTiO3에서 형성된 core/shell 구조에서 shell의 TCC 거동: 독립적 관찰)

  • Jeon, Sang-Chae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.110-116
    • /
    • 2020
  • Grains in the BaTiO3, which is used for a dielectric layer in MLCC(Multi-Layer Ceramic Capacitor) are necessary to form core/shell structure for a stable TCC(Temperature Coefficient of Capacitance) behavior. The shell property has been deduced from the whole TCC behavior of core/shell structure due to its tiny size, ~ few ㎛. This study demonstrates the individual TCC behavior of the shell phase measured by micro-contact measurement in a temperature range between 35 and 135℃. Pt electrode pairs deposited on an enlarged core/shell structure in a diffusion couple sample made the measurement possible. As a result, the DPT (Diffusion Phase Transition) behavior of the shell phase was revealed as a different TCC behavior from that of the core: a broad peak with Tm at 65℃. This would be also useful experimental data for a modelling that depicts dielectric-temperature behavior of core/shell structure.

Influence of Flow Conditions on a Boundary Layer to the Near-Wake of a Flat Plat (평판 경계층 유동조건이 근접후류에 미치는 영향)

  • Kim, D.H.;Chang, J.W.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1625-1630
    • /
    • 2004
  • An experimental study was carried out to investigate influence of flow conditions on a boundary layer to the near-wake of a flat plate. The flow condition in the vicinity of trailing edge that is influenced by upstream condition history is an essential factor that determines the physical characteristics of a near-wake. Various tripping wires were used to change boundary layer flow condition of upstream at the freestream velocity of 6.0 m/sec. Measurements of the boundary layer and near-wake according to the change of upstream conditions were conducted by using both I-probe(55P14 for boundary layer) and X-probe(55P61 for wake). Normalized velocity profiles of the boundary layer were shown the flow types such as laminar boundary layer, transition, and turbulent boundary layer at 0.95C from the leading edge. The velocity and turbulence intensity profiles of the near-wake for the case of laminar boundary layer at the flat plate surface exhibited a defect and a double peak showing perfect symmetry, respectively.

  • PDF

Enhanced Electrical Properties of Light-emitting Electrochemical Cells Based on PEDOT:PSS incorporated Ruthenium(II) Complex as a Light-emitting layer

  • Gang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyeon;Jo, Yeong-Ran;Hwang, Jong-Won;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.139-139
    • /
    • 2010
  • Ionic Transition Metal Complex based (iTMC) Light-emitting electrochemical cells (LEECs) have been drawn attention for cheap and easy-to-fabricate light-emitting device. LEEC is one of the promising candidate for next generation display and solid-state lighting applications which can cover the defects of current commercial OLEDs like complicated fabrication process and strong work-function dependent sturucture. We have investigated the performance characteristics of LEECs based on poly (3, 4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)-incorporated transition metal complex, which is tris(2, 2'-bipyridyl)ruthenium(II) hexafluorophosphate in this study. There are advantages using conductive polymer-incorporated luminous layer to prevent light disturbance and absorbance while light-emitting process between light-emitting layer and transparent electrode like ITO. The devices were fabricated as sandwiched structure and light-emitting layer was deposited approximately 40nm thickness by spin coating and aluminum electrode was deposited using thermal evaporation process under the vacuum condition (10-3Pa). Current density and light intensity were measured using optical spectrometer, and surface morphology changes of the luminous layer were observed using XRD and AFM varying contents of PEDOT:PSS in the Ruthenium(II) complex solution. To observe enhanced ionic conductivity of PEDOT:PSS and luminous layer, space-charge-limited-currents model was introduced and it showed that the performances and stability of LEECs were improved. Main discussions are the followings. First, relationship between film thickness and performance characteristics of device was considered. Secondly, light-emitting behavior when PEDOT:PSS layer on the ITO, as a buffer, was introduced to iTMC LEECs. Finally, electrical properties including carrier mobility, current density-voltage, light intensity-voltage, response time and turn-on voltages were investigated.

  • PDF

Large-scale structure of circular jet in transitional region at reynolds number of ${10}^{4}$ (Reynolds수 ${10}^{4}$일때 천이영역에서의 왼형제트의 Large-Scale 구조에 관한 연구)

  • 이택식;최은수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.823-829
    • /
    • 1986
  • The Large-scale structure of the circular jet in the transition region, which influences the subsequent flow in the turbulent region, was studied experimentally. Measuring equipments are composed of the two channel hot-wire anemometer, the computer controlled two-directional traverse mechanism, the data acquisition system, and FFT-analyzer. The circular jet has 50mm diameter. The mean velocity distribution, the velocity fluctuation, the auto 'cross correlations and the power spectra were acquired at moderate Reynolds number of 10$^{4}$. And the VITA method was used to measure the convection velocity of Large-scale eddy. The phase of u'is in advance of that of v'in all regions. .over bar. $R_{u}$(.tau.=0) is approximately zero in the potential core region, but a small regular deviation is observed. At a position in the mixing layer region the convection velocity is different along the part of the eddy, and in this experiment the convection velocity of the inner region is larger than the outer region. The averge convection velocity of the eddy along y/D=0 was approximately constant in the transition region.D=0 was approximately constant in the transition region.