• Title/Summary/Keyword: Transition duct

Search Result 29, Processing Time 0.028 seconds

A Study on the Axial Velocity Profile of Developing Laminar Flows in a Straight Duct Connected to a Square Curved Duct (정사각단면 곡관덕트에 연결된 직관덕트에서 층류유동의 속도분포)

  • Sohn, Hyun-Chull;Lee, Haeng-Nam;Park, Gil-Moon;Lee, Hong-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1058-1065
    • /
    • 2004
  • In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180$^{\circ}$ curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles, and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code(STAR CD). For the PIV measurement, working fluid produced from mosquito coils smoke. The experimental data were obtained at 9 points dividing the test sections by 400 mm. Experimental and numerical results can be summarized as follows. Critical Reynolds number, Recr which indicates transition from laminar steady flow to transition steady flow was 2,150. As Reynolds number, Re, was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and the secondary flows. The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number.

A Study on the Transition & Expectation through Survey for Existing Building and Engineer's Opinion (기존 사무소 건물 및 설비전문가 조사를 통한 설비시스템의 변화와 전망에 대한 연구)

  • Lee, Gwan-Ho;Kim, Nam-Gyu;Park, Jin-Chul;Rhee, Eon-Ku
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.63-69
    • /
    • 2005
  • This study is the survey of a transition procedure of building services systems(heat source, HVAC, water supply) through the survey of existing office buildings, building design documents. The preference & major consideration of system selection is the engineer's opinions. The results of this survey can be used in selection of building services system design. In this survey, "Hot & cold water generator system" and "single duct CAV+FCU system", "Elevated water tank system" are selected. The most important consideration in system selection is the energy saving in heat source system, and comfort in HVAC system, and water pressure in water supply system. They prefer "steam boiler+absorption chiller system" for heat source system, "steam boiler+ice thermal storage system", "hot & cold water generator system", "district heating+absorption chiller system" : "single duct CAV+FCU system" and "single duct VAV+convector system" for HVAC system: and "booster pump system" for water supply system.

A Study on the Influence of Centrifugal Force for Flow Characteristics in Square-sectional Air Duct (정방형 공기덕트 내부의 유동특성에 원심력이 미치는 영향에 관한 연구)

  • Bong, Tae-Keun;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.455-460
    • /
    • 2012
  • In this paper, an experimental and numerical investigation of transition characteristics in a square-sectional curved duct flow under Centrifugal force is presented. The experimental study is carried out to measure axial velocity profiles by using Laser Doppler Velocimeter (LDV) system. Computational fluid dynamic (CFD) simulation was performed using the commercial CFD code FLUENT to investigate the transition characteristics. The flow development is found to depend upon Dean number and curvature ratio. The velocity profiles in center of the duct have lower value than those of the inner and outer walls because of the centrifugal forces.

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스템의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Chanduk;Park Jong-Ha;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.219-224
    • /
    • 2005
  • In order to investigate transient behaviour of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. For transient simulation of the main engine system, the ICV(Inter-Component Volume) method was applied. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1Km, flight Mach number 0.1 and maximum engine rpm.

  • PDF

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스뎀의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Changduk;Park Jongha;Yang Sooseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • In order to investigate transient behavior, of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1km, flight Mach number 0.1 and maximum engine rpm.

Analytical Study on Stall Stagnation Boundaries in Axial-Flow Compressor and Duct Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.56-74
    • /
    • 2013
  • Stall stagnations in the system of axial-flow compressors and ducts occur in transition from deep surge conditions to decayed or converged stall conditions. The present study is concerned with the boundaries between the deep surges and the stagnation stalls on the basis of analytical results by a code on surge transients analysis and simulation. The fundamental acoustical-geometrical stagnation boundaries were made clear from examinations of the results on a variety of duct configurations coupled with a nine-stage compressor and a single stage fan. The boundary was found to be formed by three parts, i.e., B- and A-boundaries, and an intermediate zone. The B-boundary occurs for the suction-duct having a length of about a quarter of the wave-length of the first resonance in the case of very short and fat plenum-type delivery duct. On the other hand, the A-boundary occurs for the long and narrow duct-type delivery flow-path having a length about a fifth of the wavelength and relatively small sectional area in the case of short and narrow suction ducts. In addition to this, the reduced surge-cycle frequencies with respect to the duct lengths are observed to have respective limiting values at the stagnation boundaries. The reduced frequency for the B-boundary is related with a limiting value of the Greitzer's B parameter. The tendency and the characteristic features of the related flow behaviors in the neighborhood of the boundaries were also made clearer.

Canard Rotor/Wing 비행체 추진시스템의 회전익 및 천이모드 성능

  • Lee, Chang-Ho
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.50-55
    • /
    • 2004
  • Performance predictions of the propulsion system were conducted for a 900㎏ class Canard Rotor/Wing vehicle. The main components of the propulsion system are turbojet engine, exhaust ducts and nozzles. The internal flow of the duct was considered as one-dimensional, compressible and viscous flow. Adequate governing equations including centrifugal force effect were applied to the analysis of the duct flows. Results such as available power, available thrust, engine throttle, mass flow rates, rotor RPM and cruise nozzle area were presented for rotary-wing mode and transition mode.

  • PDF

Transition of Turbulent Kinetic Energy Through a Serial Unit of Straight-Duct, Contraction and Free-Jet (상류유동전개부, 수축부 및 자유분사류로 이어지는 유동장에서의 난류에너지 천이에 대한 연구)

  • 한용운;남경덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2368-2375
    • /
    • 1992
  • The transition of turbulent kinetic energy(TKE) balance along the centerline of the flow unit, which is composed of straight-duct, contraction and free-jet, has been investigated by the hot-wire anemometry. It is found that the mean turbulent kinetic energy is balanced by the dissipation in the internal flow region ; by the production and the dissipation, through contraction ; and by the dissipation, in initial region(X〈8D) of free-jet. But in the developing region (8D〈X〈20D) it is balanced by all of the three(ie, diffusion, production and dissipation). Finally, in the downstream of free-jet, the mean TKE is balanced again by dissipation like as the beginning. The decay-laws along the centerline are checked in the region of free jet as well as in the straightduct. After the developing region of free-jet also exist the decay-laws, the exponent of the axial turbulence being bigger than of the radial.

Effects of Corrugation Angle on Local Heat/Mass Transfer in Wavy Duct of Heat Exchanger (열교환기 내부 유로의 꺾임각 변화에 따른 국소 열/물질전달 특성 고찰)

  • Jang, In-Hyuk;Hwang, San-Dong;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.789-799
    • /
    • 2004
  • An experimental study is conducted to investigate the effects of duct corrugation angle on heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewalls are determined by using a naphthalene sublimation technique. The corrugation angles(${\alpha}$) of the wavy ducts are 145$^{\circ}$, 130$^{\circ}$, 115$^{\circ}$ and 100$^{\circ}$. And the Reynolds numbers based on the duct hydraulic diameter vary from 300 to 3,000. The results show that at the low Re(Re $\leq$1000), the secondary vortices called Taylor-Gortler vortices perpendicular to the main flow direction are generated due to effect of duct curvature. By these secondary vortices, high heat/mass transfer regions are formed on both pressure-side and suction-side walls. At the high Re(Re $\geq$ 1000), these secondary flows are vanished with helping flow transition to turbulent flow and the regions which show high heat/mass coefficients by flow reattachment are formed on suction side. As corrugation angle decreases, the local peak Sh induced by Taylor-Gortler vortices increase at Re $\leq$1000. At high Re(Re $\geq$ 1000), by the existence of different kind of secondary flows called Dean vortices, non-uniform Sh distribution appears along spanwise direction at the narrow corrugation angle (${\alpha}$=100$^{\circ}$). Average Sh also increase by the enhanced effect of secondary vortices and flow reattachment. More pumping power (pressure loss) is required with the smaller corrugation angle due to the enhancement of flow instability.

Effects of Tripping Wire on Entrance Regions of a Duct (Part 2: Experimental Study) (관의 입구구간에 있어서 Tripping Wire의 효과 (제 2 보, 실험적 연구))

  • 박승덕;문명국
    • Journal of the KSME
    • /
    • v.16 no.3
    • /
    • pp.277-283
    • /
    • 1976
  • An analytical study on the effects of initial turbulence intensities and Reynolds Number on the transition flow of a circular tube is conducted in Part I;Analysis of Transition Flow. In this second report, however, the effects of tripping wire on the developing regions of a horizontal pipe are studied experimentally and the results of analytical and experimental studies are compared. The agreements between the two results are relatively good. The diameter of the apparatus tube in the experimental works is 76.25mm. and the length is about 7m. The tripping wire diameters used in the experiments are 1.0,1.5,2.0,2.5mm., etc. From the experimental works, the relations between tripping wire size; o.e., diameter and Reynolds Number are proposed for the given thbe diameter.

  • PDF