• 제목/요약/키워드: Transient green function

검색결과 22건 처리시간 0.021초

힐버트 변환을 이용한 복소강성을 지니는 1자유도 시스템의 과도응답 (Transient Response of 1 DOF Complex Stiffness System via Hilbert-transform)

  • 배승훈;정의봉;조진래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.298-299
    • /
    • 2014
  • The solution of transient response of complex stiffness system was obtained using a green function of this system. To derive the green function, governing equation of this systems was expressed in Steady Space and solved by the diagonalization. The solution of this system are written as a convolution integral form. The result that are calculated by the numerical integration process for transient responses was showed properly.

  • PDF

일정 수심 위를 진행하는 파낭의 시간에 따른 변화 (Propagation of Transient Waves over a Constant Depth)

  • 서승남
    • 한국해안해양공학회지
    • /
    • 제5권4호
    • /
    • pp.279-287
    • /
    • 1993
  • 일정 수심 위를 전파하는 삼차원 파낭의 시간에 따른 변화를 Green함수를 사용하여 나타내었다. 본 논문에서 구한 해에 적절한 가정을 부여하면 기존의 해가 유도되므로 본 해는 보다 일반적인 해임을 입증하였다. 유도한 해를 수치적분하여 파낭 분산효과에 의한 파고 감소를 나타내고 이를 분석하였다.

  • PDF

3 차원 시간영역 근사비선형 2 차경계요소법에 의한 선체의 대진폭 운동 및 파랑하중 계산 (Estimation of Large Amplitude Motions and Wave Loads of a Ship Advancing in Transient Waves by Using a Three Dimensional Time-domain Approximate Body-exact Nonlinear 2nd-order BEM)

  • 홍도천;홍사영;성홍근
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.291-305
    • /
    • 2010
  • A three-dimensional time-domain calculation method is of crucial importance in prediction of the motions and wave loads of a ship advancing in a severe irregular sea. The exact solution of the free surface wave-ship interaction problem is very complicated because of the essentially nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. The Froude-Krylov force and the hydrostatic restoring force are calculated over the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials over the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials which are discretized according to the second-order boundary element method (Hong and Hong 2008). The diffraction impulse-response functions of the Wigley seakeeping model advancing in transient head waves at various Froude numbers have been presented. A simulation of coupled heave-pitch motion of a long rectangular barge advancing in regular head waves of large amplitude has been carried out. Comparisons between the linear and the approximate body nonlinear numerical results of motions and wave loads of the barge at a nonzero Froude number have been made.

Unsteady Temperature Distributions in a Semi-infinite Hollow Circular Cylinder of Functionally Graded Materials

  • Kim, Kui-Seob;NODA, Naotake
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.46-55
    • /
    • 2001
  • A Green's function approach based on the laminate theory is adopted to obtain the unsteady temperature distributions in a semi-infinite hollow circular cylinder made of functionally graded materials (FGMs). The transient heat conduction equation based on the laminate theory is formulated into an eigenvalue problem for each layer by using the eigenfunction expansion theory and the separation of variables. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the unsteady temperature distributions. Numerical calculations are carried out for the semi-infinite hollow circular FGM cylinder subjected to partially heated loads, and the numerical results are shown in figures.

  • PDF

음향방출 신호의 검출을 위한 공진형 및 광대역 센서 제작과 특성평가 (Development and Characterization of High-Performance Acoustic Emission Sensors)

  • 김병극;김영환
    • 비파괴검사학회지
    • /
    • 제12권4호
    • /
    • pp.9-17
    • /
    • 1993
  • Three types of piezoelectric sensors to detect acoustic emission signals were developed and characterized. Epicentral displacement and velocity of a plate to have infinite boundary were calculated by convolution between a Green's function and a simulated source time function to show parabolic rising characteristic. The sensor calibration system set up was composed of a steel plate, a glass capillary, an indentor and a load cell indicator The transient elastic signals were detected by the sensors. The results were compared with the theoretical results and Fast Fourier Transformed. As the results, the sensor fabricated using a disk shape of a piezoelectric PZT element showed resonant characteristics. The sensors fabricated using a conical shape PZT element and a PVDF polymer film showed the wide band characteristics for particle displacement and velocity, respectively. The calculated results showed good agreements with the transient responses in the cases of the wide band sensors and it was confirmed that the simulated source time function had been properly assumed.

  • PDF

Free and transient responses of linear complex stiffness system by Hilbert transform and convolution integral

  • Bae, S.H.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • 제17권5호
    • /
    • pp.753-771
    • /
    • 2016
  • This paper addresses the free and transient responses of a SDOF linear complex stiffness system by making use of the Hilbert transform and the convolution integral. Because the second-order differential equation of motion having the complex stiffness give rise to the conjugate complex eigen values, its time-domain analysis using the standard time integration scheme suffers from the numerical instability and divergence. In order to overcome this problem, the transient response of the linear complex stiffness system is obtained by the convolution integral of a green function which corresponds to the unit-impulse free vibration response of the complex system. The damped free vibration of the complex system is theoretically derived by making use of the state-space formulation and the Hilbert transform. The convolution integral is implemented by piecewise-linearly interpolating the external force and by superimposing the transient responses of discretized piecewise impulse forces. The numerical experiments are carried out to verify the proposed time-domain analysis method, and the correlation between the real and imaginary parts in the free and transient responses is also investigated.

Development and verification of PWR core transient coupling calculation software

  • Li, Zhigang;An, Ping;Zhao, Wenbo;Liu, Wei;He, Tao;Lu, Wei;Li, Qing
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3653-3664
    • /
    • 2021
  • In PWR three-dimensional transient coupling calculation software CORCA-K, the nodal Green's function method and diagonal implicit Runge Kutta method are used to solve the spatiotemporal neutron dynamic diffusion equation, and the single-phase closed channel model and one-dimensional cylindrical heat conduction transient model are used to calculate the coolant temperature and fuel temperature. The LMW, NEACRP and PWR MOX/UO2 benchmarks and FangJiaShan (FJS) nuclear power plant (NPP) transient control rod move cases are used to verify the CORCA-K. The effects of burnup, fuel effective temperature and ejection rate on the control rod ejection process of PWR are analyzed. The conclusions are as follows: (1) core relative power and fuel Doppler temperature are in good agreement with the results of benchmark and ADPRES, and the deviation between with the reference results is within 3.0% in LMW and NEACRP benchmarks; 2) the variation trend of FJS NPP core transient parameters is consistent with the results of SMART and ADPRES. And the core relative power is in better agreement with the SMART when weighting coefficient is 0.7. Compared with SMART, the maximum deviation is -5.08% in the rod ejection condition and while -5.09% in the control rod complex movement condition.

고온 표면에 부착된 증발 액적에 의한 열유속 변화 추정 (The Evaluation of Heat Flux by Evaporating Droplet on the Hot Surface)

  • 신운철;배신철
    • 대한기계학회논문집B
    • /
    • 제31권9호
    • /
    • pp.764-771
    • /
    • 2007
  • The objective of the present work is to evaluate the evaporation heat flux of deposited droplet on the hot surface by using of inverse heat transfer technique. On the basis of measured temperature, a integral form solution is determined for the transient temperatures beyond the two positions by using Green's function technique. This method first approximates the temperature data with a half polynomial series of time. we compared this result with constant radius model in single phase regime, nucleate boiling regime, film boiling regime respectively. this paper performed the experiments as following conditions: (a)the surface temperature is within the range between $80^{\circ}C\;and\;160^{\circ}C$ in the conduction, (b) droplet diameter are 2.4 and 3.0mm. (c) surface roughness is $0.18{\mu}m$.

천수에서 2차원 수치파 수조에 대한 계산 (A Numerical Study on 2-Dimensuional Tank with Shallow Draft)

  • 임춘규
    • 한국해양공학회지
    • /
    • 제14권1호
    • /
    • pp.1-5
    • /
    • 2000
  • A numerical analysis for wave motion in the shallow water is presented. The method is based on potential theory. The fully nonlinear free surface boundary condition is assumed in an inner domain and this solution is matched along an assumed common boundary to a linear solution in outer domain. In two-dimensional problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary.

  • PDF

Modeling of flux enhancement in presence of concentration polarization by pressure pulsation during laminar cross flow ultrafiltration

  • Kumar, Kamal;De, Sirshendu
    • Membrane and Water Treatment
    • /
    • 제1권4호
    • /
    • pp.253-271
    • /
    • 2010
  • A theoretical study for the flux enhancement by pulsation of transmembrane pressure is presented for osmotic pressure controlled ultrafiltration under laminar flow regime. The transient velocity profile is solved analytically using Green's function method. Time dependent convective diffusive equation is solved to quantify the membrane surface concentration and the permeate flux, numerically. The effects of the amplitude and frequency of pulsation on flux, surface concentration and observed retention are studied.