• Title/Summary/Keyword: Transient green function

Search Result 22, Processing Time 0.026 seconds

Transient Response of 1 DOF Complex Stiffness System via Hilbert-transform (힐버트 변환을 이용한 복소강성을 지니는 1자유도 시스템의 과도응답)

  • Bae, Seung-Hoon;Jeong, Weui Bong;Cho, Jin Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.298-299
    • /
    • 2014
  • The solution of transient response of complex stiffness system was obtained using a green function of this system. To derive the green function, governing equation of this systems was expressed in Steady Space and solved by the diagonalization. The solution of this system are written as a convolution integral form. The result that are calculated by the numerical integration process for transient responses was showed properly.

  • PDF

Propagation of Transient Waves over a Constant Depth (일정 수심 위를 진행하는 파낭의 시간에 따른 변화)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.279-287
    • /
    • 1993
  • Three dimensional linear transient wave propagation over a constant depth is presented using Green's function method. Present solution is proved to be a more general solution from which the existing solutions are obtained by using the appropriate assumptions. The effect of dispersion on wave height attenuation is shown and discussed on the numerical results of the solution.

  • PDF

Estimation of Large Amplitude Motions and Wave Loads of a Ship Advancing in Transient Waves by Using a Three Dimensional Time-domain Approximate Body-exact Nonlinear 2nd-order BEM (3 차원 시간영역 근사비선형 2 차경계요소법에 의한 선체의 대진폭 운동 및 파랑하중 계산)

  • Hong, Do-Chun;Hong, Sa-Young;Sung, Hong-Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.291-305
    • /
    • 2010
  • A three-dimensional time-domain calculation method is of crucial importance in prediction of the motions and wave loads of a ship advancing in a severe irregular sea. The exact solution of the free surface wave-ship interaction problem is very complicated because of the essentially nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. The Froude-Krylov force and the hydrostatic restoring force are calculated over the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials over the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials which are discretized according to the second-order boundary element method (Hong and Hong 2008). The diffraction impulse-response functions of the Wigley seakeeping model advancing in transient head waves at various Froude numbers have been presented. A simulation of coupled heave-pitch motion of a long rectangular barge advancing in regular head waves of large amplitude has been carried out. Comparisons between the linear and the approximate body nonlinear numerical results of motions and wave loads of the barge at a nonzero Froude number have been made.

Unsteady Temperature Distributions in a Semi-infinite Hollow Circular Cylinder of Functionally Graded Materials

  • Kim, Kui-Seob;NODA, Naotake
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.46-55
    • /
    • 2001
  • A Green's function approach based on the laminate theory is adopted to obtain the unsteady temperature distributions in a semi-infinite hollow circular cylinder made of functionally graded materials (FGMs). The transient heat conduction equation based on the laminate theory is formulated into an eigenvalue problem for each layer by using the eigenfunction expansion theory and the separation of variables. The eigenvalues and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer constitute the Green's function solution for analyzing the unsteady temperature distributions. Numerical calculations are carried out for the semi-infinite hollow circular FGM cylinder subjected to partially heated loads, and the numerical results are shown in figures.

  • PDF

Development and Characterization of High-Performance Acoustic Emission Sensors (음향방출 신호의 검출을 위한 공진형 및 광대역 센서 제작과 특성평가)

  • Kim, B.G.;Kim, Y.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.4
    • /
    • pp.9-17
    • /
    • 1993
  • Three types of piezoelectric sensors to detect acoustic emission signals were developed and characterized. Epicentral displacement and velocity of a plate to have infinite boundary were calculated by convolution between a Green's function and a simulated source time function to show parabolic rising characteristic. The sensor calibration system set up was composed of a steel plate, a glass capillary, an indentor and a load cell indicator The transient elastic signals were detected by the sensors. The results were compared with the theoretical results and Fast Fourier Transformed. As the results, the sensor fabricated using a disk shape of a piezoelectric PZT element showed resonant characteristics. The sensors fabricated using a conical shape PZT element and a PVDF polymer film showed the wide band characteristics for particle displacement and velocity, respectively. The calculated results showed good agreements with the transient responses in the cases of the wide band sensors and it was confirmed that the simulated source time function had been properly assumed.

  • PDF

Free and transient responses of linear complex stiffness system by Hilbert transform and convolution integral

  • Bae, S.H.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.753-771
    • /
    • 2016
  • This paper addresses the free and transient responses of a SDOF linear complex stiffness system by making use of the Hilbert transform and the convolution integral. Because the second-order differential equation of motion having the complex stiffness give rise to the conjugate complex eigen values, its time-domain analysis using the standard time integration scheme suffers from the numerical instability and divergence. In order to overcome this problem, the transient response of the linear complex stiffness system is obtained by the convolution integral of a green function which corresponds to the unit-impulse free vibration response of the complex system. The damped free vibration of the complex system is theoretically derived by making use of the state-space formulation and the Hilbert transform. The convolution integral is implemented by piecewise-linearly interpolating the external force and by superimposing the transient responses of discretized piecewise impulse forces. The numerical experiments are carried out to verify the proposed time-domain analysis method, and the correlation between the real and imaginary parts in the free and transient responses is also investigated.

Development and verification of PWR core transient coupling calculation software

  • Li, Zhigang;An, Ping;Zhao, Wenbo;Liu, Wei;He, Tao;Lu, Wei;Li, Qing
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3653-3664
    • /
    • 2021
  • In PWR three-dimensional transient coupling calculation software CORCA-K, the nodal Green's function method and diagonal implicit Runge Kutta method are used to solve the spatiotemporal neutron dynamic diffusion equation, and the single-phase closed channel model and one-dimensional cylindrical heat conduction transient model are used to calculate the coolant temperature and fuel temperature. The LMW, NEACRP and PWR MOX/UO2 benchmarks and FangJiaShan (FJS) nuclear power plant (NPP) transient control rod move cases are used to verify the CORCA-K. The effects of burnup, fuel effective temperature and ejection rate on the control rod ejection process of PWR are analyzed. The conclusions are as follows: (1) core relative power and fuel Doppler temperature are in good agreement with the results of benchmark and ADPRES, and the deviation between with the reference results is within 3.0% in LMW and NEACRP benchmarks; 2) the variation trend of FJS NPP core transient parameters is consistent with the results of SMART and ADPRES. And the core relative power is in better agreement with the SMART when weighting coefficient is 0.7. Compared with SMART, the maximum deviation is -5.08% in the rod ejection condition and while -5.09% in the control rod complex movement condition.

The Evaluation of Heat Flux by Evaporating Droplet on the Hot Surface (고온 표면에 부착된 증발 액적에 의한 열유속 변화 추정)

  • Shin, Woon-Chul;Bae, Sin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.764-771
    • /
    • 2007
  • The objective of the present work is to evaluate the evaporation heat flux of deposited droplet on the hot surface by using of inverse heat transfer technique. On the basis of measured temperature, a integral form solution is determined for the transient temperatures beyond the two positions by using Green's function technique. This method first approximates the temperature data with a half polynomial series of time. we compared this result with constant radius model in single phase regime, nucleate boiling regime, film boiling regime respectively. this paper performed the experiments as following conditions: (a)the surface temperature is within the range between $80^{\circ}C\;and\;160^{\circ}C$ in the conduction, (b) droplet diameter are 2.4 and 3.0mm. (c) surface roughness is $0.18{\mu}m$.

A Numerical Study on 2-Dimensuional Tank with Shallow Draft (천수에서 2차원 수치파 수조에 대한 계산)

  • 임춘규
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2000
  • A numerical analysis for wave motion in the shallow water is presented. The method is based on potential theory. The fully nonlinear free surface boundary condition is assumed in an inner domain and this solution is matched along an assumed common boundary to a linear solution in outer domain. In two-dimensional problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary.

  • PDF

Modeling of flux enhancement in presence of concentration polarization by pressure pulsation during laminar cross flow ultrafiltration

  • Kumar, Kamal;De, Sirshendu
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.253-271
    • /
    • 2010
  • A theoretical study for the flux enhancement by pulsation of transmembrane pressure is presented for osmotic pressure controlled ultrafiltration under laminar flow regime. The transient velocity profile is solved analytically using Green's function method. Time dependent convective diffusive equation is solved to quantify the membrane surface concentration and the permeate flux, numerically. The effects of the amplitude and frequency of pulsation on flux, surface concentration and observed retention are studied.