• Title/Summary/Keyword: Transient analysis

Search Result 3,049, Processing Time 0.027 seconds

Prediction of Transient Temperature Distributions in the Wall of Curved Piping System Subjected to Internally Thermal Stratification Flow (열성층유동 곡관벽에서의 과도온도분포 예측)

  • Jo, J.C.;Cho, S.J.;Kim, Y.I.;Park, J.Y.;Kim, S.J.;Choi, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.474-481
    • /
    • 2001
  • This paper addresses a numerical method for predicting transient temperature distributions in the wall of a curved pipe subjected to internally thermal stratification flow. A simple and convenient numerical method of treating the unsteady conjugate heat transfer in the non-orthogonal coordinate systems is presented. The proposed method is implemented in a finite volume thermal-hydraulic computer code based on a cell-centered, non-staggered grid arrangement, the SIMPLEC algorithm, a higher-order bounded convection scheme, and the modified version of momentum interpolation method. Calculations are performed for the transient evolution of thermal stratification in two curved pipes, where the one has thick wall and the other has so thin wall that its presence can be negligible in the heat transfer analysis. The predicted results show that the thermally stratified flow and transient conjugate heat transfer in a curved pipe with a finite wall thickness can be satisfactorily analyzed by the present numerical method, and that the neglect of wall thickness in the prediction of pipe wall temperature distributions can provide unacceptably distorted results.

  • PDF

Flow and Heat Transfer Analysis of a Reactor Coolant Pump in Transient Conditions (원자로 냉각재 펌프의 과도 상태의 유동 및 열전달 해석 연구)

  • Hur, N.;Kim, S.;Yoo, K.-P.;Kim, S. T.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.24-30
    • /
    • 2000
  • The structural analysis of a reactor coolant pump(RCP) of a nuclear power plant is very important for the safety assessment of the plant. Accurate boundary conditions for the heat transfer coefficient are required for reliable thermal stress analysis of the pump casing, especially in transient operations of the pump since the coolant properties are largely dependent on operational conditions. In the present study, a 3D mixed flow type coolant pump was modeled from the RCP drawings and analyzed in the steady state and number of transient flow conditions by using a commercial code STAR-CD. From the result of the computation, it is seen that the average heat transfer coefficients for the cases considered are found to be the suggested values of the manufacturer, Westinghouse Energy System. The unevenness in local heat transfer coefficients, however, is found to be considerable so that the use of average heat transfer coefficients in all boundaries might not give reliable thermal stress predictions.

  • PDF

Dynamic Finite Element Modeling and Structural Vibration Analysis of a Gyrocopter (자이로콥터의 동적 유한요소모델링 및 구조진동해석)

  • Jung, Se-Un;Yang, Yong-Jun;Kim, Hyun-Jung;Je, Sang-Eon;Cho, Tae-Hwan;Kim, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.813-820
    • /
    • 2005
  • In this study, finite element modeling and structural vibration analyses of a gyrocopter have been conducted considering dynamic hub-loads due to rotating blades. For this research, 3D CATIA models for most mechanical parts are exactly prepared and assembled into the final aircraft configuration. Then the dynamic finite element model including several non-structural parts are constructed based on the exact 3D CAD data. Computational structural dynamics technique based on finite element method is applied using both MSC/NASTRAN and developed in-house code which can largely reduce the pre and postprocessing time of general transient dynamic analyses. Modal based transient and frequency response analyses are used to efficiently investigate vibration characteristics. The results include natural frequency comparison for different fuel and pilot conditions, fundamental natural mode shapes, frequency responses and transient acceleration responses of the present gyrocopter model.

  • PDF

Analysis and Reduction of Transient Time Periods for Smooth Handoff Packets in Mobile IPv6 Networks (Mobile IPv6망에서 Smooth 핸드오프 패킷의 과도기간 분석 및 단축)

  • Lee, Dong-Wook;Kim, Jong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11B
    • /
    • pp.999-1006
    • /
    • 2003
  • In the paper, we investigate the impact of handoff on the packet delivery in the Mobile IPv6 networks, where the smooth handoff is adopted. That is measured by an 'unstable time period (UTP)', a 'silence time period(STP)', and a 'handoff time period (HTP)' in the mobile node's perspective. Then, we propose a queuing model to get the exact value of the handoff transient time. The numerical results show that the queuing delay for the handoff packets and the involved link (or route) capacities affect the estimated UTP, STP, and HTP. On the other hand, the damage of application caused by handoff will increases when the handoff transient time becomes longer. We show that the priority scheduling method can achieve shorter STP and UP than the FIFO scheduling method that is generally used in best-effort IP network.

A Transient Response Analysis in the State-space Applying the Average Velocity Concept (평균속도 개념을 적용한 상태공간에서의 과도응답해석)

  • 김병옥;김영철;김영춘;이안성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.424-431
    • /
    • 2004
  • An implicit direct-time integration method for obtaining transient responses of general dynamic systems is described. The conventional Newmark method cannot be directly applied to state-space first-order differential equations, which contain no explicit acceleration terms. The method proposed here is the state-space Newmark method that incorporates the average velocity concept, and can be applied to an analysis of general dynamic systems that are expressed by state-space first-order differential equations. It is also readily coded into a program. Stability and accuracy analyses indicate that the method is numerically unconditionally stable like the conventional Newmark method, and has a period error of 2nd-order accuracy for small damping and 4th-order for large damping and an amplitude error of 2nd-order, regardless of damping. In addition, its utility and validity are confirmed by two application examples. The results suggest that the proposed state-space Newmark method based on average velocity be generally applied to the analysis of transient responses of general dynamic systems with a high degree of reliability with respect to stability and accuracy.

Steady-state and Transient Performance Simulation and Limit Control for Compressor Surge and Turbine Over-temperature of Turboprop Engine (PT6A-62) (터보프롭 엔진(PT6A-62)의 동.정적 성능모사와 압축기 서지 및 터빈 자온 제어연구)

  • 공창덕;기자영;강명철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.53-63
    • /
    • 2002
  • The steady-state and transient performance simulation program for a turboprop engine(PT6A-62) was developed. Specially this program included some algorithms, such as flat-rated behaviors in performance and limit control algorithms to prevent the compressor surge and the compressor-turbine inlet limit temperature overshoot. In order to minimize analysis errors, on interpolation method in component characteristics using matching errors and specific heat and specific heat ratio, which are functions of temperatures were used. The developed steady state performance analysis program can handle various conditions such as altitude, bleed extraction, inlet temperature and pressure and part throttle, and the transient performance analysis program incorporated a general mode for transient simulation and a control mode for prevention of the compressor surge and the turbine inlet limit temperature overshoot.

Analysis of the Overvoltages during Energizing Transmission Lines using EMTP (EMTP를 이용한 시송전 계통의 송전선로 초기 가압시 과전압 분석에 관한 연구)

  • Yeo, Sang-Min;Kim, Chul-Hwan;Lyu, Young-Sik;Joo, Haeng-Ro;Cho, Burm-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.873-878
    • /
    • 2009
  • When the transmission lines are initially energized for power system restoration, the power system suffers the various overvoltages that can be classified as steady-state, transient, and dynamic overvoltages. For the accurate analyses of these overvoltages, many researchers utilize different simulation tools such as Power System Simulator for Engineering(PSS/E). Although PSS/E provides good solutions in steady-state and dynamic overvoltages, it is not suitable for transient overvoltages. Therefore, transient overvoltages are simulated by using Electro-Magnetic Transients Program(EMTP) developed for the analysis of transients in the power system. Recently, EMTP can be also used to simulate dynamic behavior of the system. In order to analyze the transient overvoltages with steady-state and dynamic overvoltages, the authors adopt EMTP as the simulation tool for the analysis of overvoltages. This paper presents the simulation results for the analyses of various overvoltages, and the possibility of EMTP to be used for these types of analyses.

Reactor core analysis through the SP3-ACMFD approach Part II: Transient solution

  • Mirzaee, Morteza Khosravi;Zolfaghari, A.;Minuchehr, A.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.230-237
    • /
    • 2020
  • In this part, an implicit time dependent solution is presented for the Boltzmann transport equation discretized by the analytic coarse mesh finite difference method (ACMFD) over the spatial domain as well as the simplified P3 (SP3) for the angular variable. In the first part of this work we proposed a SP3-ACMFD approach to solve the static eigenvalue equations which provide the initial conditions for temp dependent equations. Having solved the 3D multi-group SP3-ACMFD static equations, an implicit approach is resorted to ensure stability of time steps. An exponential behavior is assumed in transverse integrated equations to establish a relationship between flux moments and currents. Also, analytic integration is benefited for the time-dependent solution of precursor concentration equations. Finally, a multi-channel one-phase thermal hydraulic model is coupled to the proposed methodology. Transient equations are then solved at each step using the GMRES technique. To show the sufficiency of proposed transient SP3-ACMFD approximation for a full core analysis, a comparison is made using transport peers as the reference. To further demonstrate superiority, results are compared with a 3D multi-group transient diffusion solver developed as a byproduct of this work. Outcomes confirm that the idea can be considered as an economic interim approach which is superior to the diffusion approximation, and comparable with transport in results.

Automation of Krylov Subspace Model Order Reduction for Transient Response Analysis with Multiple Loading (다중 하중 과도응답해석 과정에 대한 크리로프 부공간 모델차수축소법의 자동화)

  • Han, Jeong Sam;Kim, Seung Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.2
    • /
    • pp.101-111
    • /
    • 2021
  • In general, several computational resources are required to perform multiple-loading transient response analyses. In this paper, we present the procedure for multiple-loading transient response analysis using the Krylov subspace model order reduction and Newmark's time integration scheme. We utilized ANSYS MAPDL, Python, and ANSYS ACT to automate the transient response analysis procedure in the ANSYS Workbench environment and studied several engineering numerical examples to demonstrate the feasibility and efficiency of the proposed approach.

Technical Consideration for Production Data Analysis with Transient Flow Data on Shale Gas Well (셰일가스정 천이유동 생산자료분석의 기술적 고려사항)

  • Han, Dong-kwon;Kwon, Sun-il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2016
  • This paper presents development of an appropriate procedure and flow chart to analyze shale gas production data obtained from a multi-fractured horizontal well according to flow characteristics in order to calculate an estimated ultimate recovery. Also, the technical considerations were proposed when a rate transient analysis was performed with field production data occurred to only $1^{st}$ transient flow. If production data show the $1^{st}$ transient flow from log-log and square root time plot analysis, production forecasting must be performed by applying different method as before and after of the end of $1^{st}$ linear flow. It is estimated by an area of stimulated reservoir volume which can be calculated from analysis results of micro-seismic data. If there are no bottomhole pressure data or micro-seismic data, an empirical decline curve method can be used to forecast production performance. If production period is relatively short, an accuracy of production data analysis could be improved by analyzing except the early production data, if it is necessary, after evaluating appropriation with near well data. Also, because over- or under-estimation for stimulated reservoir volume could take place according to analysis method or analyzer's own mind, it is necessary to recalculate it with fracture modeling, reservoir simulation and rate transient analysis, if it is necessary, after adequacy evaluation for fracture stage, injection volume of fracture fluid and productivity of producers.