• Title/Summary/Keyword: Transient analyses

Search Result 331, Processing Time 0.026 seconds

Transient Flow Characteristics of the Room Air Conditioner (룸에어컨 내부 유동의 과도현상에 대한 수치적 연구)

  • Seo, Hyeon-Seok;Kim, Jin-Baek;Kim, Youn-Jea
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.526-529
    • /
    • 2008
  • Air Conditioner has become a popular comfort providing device since two decades, whether in an office or home especially for warm and wet climate countries. The RAC (Room Air Conditioner) is widely used in various working spaces and residences. It composed of heat exchager, cross-flow fan, stabilizer, rearguider and blade of diffuser region, etc. In this study, numerical analyses based on the prediction of transient phenomena were carried out to investigate the flow characteristics in the RAC, including the impeller, the rearguider, the stabilizer and the blade of the diffuser region. Using a commercial code, FLUENT, the velocity, pressure and streamlines were obtained with unsteady, turbulent flow and no-slip condition. The angular velocities of impeller are located in the 900 rpm. Turbulent closure was achieved using a standard k-${\varepsilon}$ model. A moving reference frame (MRF) approach was adopted to simulate the flow field generated by impeller in the RAC. Results were graphically depicted with various geometrical configurations and operating conditions.

  • PDF

Simulation of Reactive Power Compensation in Grid-Connected Wind Power Generation System (계통연계 풍력발전시스템의 무효전력 보상에 대한 시뮬레이션)

  • Ro, Kyoung-Soo;Jang, Bo-Kyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.82-89
    • /
    • 2011
  • Reactive power support is considered to be necessary for dealing with a voltage stability issue with wind turbine system employing squirrel-cage induction generator(SCIG). This paper analyses steady-state characteristics of the SCIG wind turbine system by simulating torque-slip characteristics of SCIG with respect to variations of interconnecting network strength and generator terminal voltage. It also presents dynamics analysis of SCIG wind turbine system on Simulink to investigate the impact of static var compensator(SVC) and static synchronous compensator(STATCOM) on transient stability enhancement. It analysed transient stability with varying fault duration times and compared the transient stability characteristics with varying rated capacities of SVC and STATCOM. It is shown that the STATCOM has a better performance and reactive power support compared to SVC.

Deterministic structural and fracture mechanics analyses of reactor pressure vessel for pressurized thermal shock

  • Jhung, M.J.;Park, Y.W.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.103-118
    • /
    • 1999
  • The structural integrity of the reactor pressure vessel under pressurized thermal shock (PTS) is evaluated in this study. For given material properties and transient histories such as temperature and pressure, the stress distribution is found and stress intensity factors are obtained for a wide range of crack sizes. The stress intensity factors are compared with the fracture toughness to check if cracking is expected to occur during the transient. A round robin problem of the PTS during a small break loss of coolant transient has been analyzed as a part of the international comparative assessment study, and the evaluation results are discussed. The maximum allowable nil-ductility transition temperatures are determined for various crack sizes.

Nonlinear finite element analysis of reinforced concrete structures subjected to transient thermal loads

  • Zhou, C.E.;Vecchio, F.J.
    • Computers and Concrete
    • /
    • v.2 no.6
    • /
    • pp.455-479
    • /
    • 2005
  • This paper describes a 2D nonlinear finite element analysis (NLFEA) platform that combines heat flow analysis with realistic analysis of cracked reinforced concrete structures. The behavior models included in the structural analysis are mainly based on the Modified Compression Field Theory and the Distributed Stress Field Model. The heat flow analysis takes into account time-varying thermal loads and temperature-dependent material properties. The capability of 2D nonlinear transient thermal analysis is then implemented into a nonlinear finite element analysis program VecTor2(C) for 2D reinforced concrete membranes. Analyses of four numerical examples are performed using VecTor2, and results obtained indicate that the suggested nonlinear finite element analysis procedure is capable of modeling the complete response of a concrete structure to thermal and mechanical loads.

Computational Vibration Analysis and Evaluation of a Tilt-Rotor Aircraft Considering Equipment Supporting Structures (틸트로터 항공기의 탑재장비 상세 지지구조 형상을 고려한 전산진동해석 및 평가)

  • Kim, Yu-Sung;Kim, Dong-Man;Yang, Jian-Ming;Lee, Jung-Jin;Kim, Dong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.4
    • /
    • pp.24-32
    • /
    • 2007
  • In this study, computational structural vibration analyses of a smart unmanned aerial vehicle (SUAV) with tilt-rotors due to dynamic hub loads have been conducted considering detailed supporting structures of installed equipments. Three-dimensional dynamic finite element model has been constructed for different fuel conditions and tilting angles corresponding to helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis is successfully established. Also, dynamic loads generated by rotating blades and wakes in the transient and forward flight conditions are calculated by unsteady computational fluid dynamics technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations of the vibration sensitive equipments are presented in detail. In addition, vibration characteristics of structures and installed equipments of which safe operation is normally limited by the vibration environment specifications are physically investigated for different flight conditions.

  • PDF

A Transient Response Analysis in the State-space Applying the Average Velocity Concept (평균속도 개념을 적용한 상태공간에서의 과도응답해석)

  • 김병옥;김영철;김영춘;이안성
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.424-431
    • /
    • 2004
  • An implicit direct-time integration method for obtaining transient responses of general dynamic systems is described. The conventional Newmark method cannot be directly applied to state-space first-order differential equations, which contain no explicit acceleration terms. The method proposed here is the state-space Newmark method that incorporates the average velocity concept, and can be applied to an analysis of general dynamic systems that are expressed by state-space first-order differential equations. It is also readily coded into a program. Stability and accuracy analyses indicate that the method is numerically unconditionally stable like the conventional Newmark method, and has a period error of 2nd-order accuracy for small damping and 4th-order for large damping and an amplitude error of 2nd-order, regardless of damping. In addition, its utility and validity are confirmed by two application examples. The results suggest that the proposed state-space Newmark method based on average velocity be generally applied to the analysis of transient responses of general dynamic systems with a high degree of reliability with respect to stability and accuracy.

Measurement and Analysis of Transient Grounding Resistance with the Pulse Generator (펄스발생기에 의한 과도접지저항의 측정과 분석)

  • Park, J.S.;Yang, J.J.;Lee, K.O.;Lee, B.H.;Lee, B.K.;Ohk, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1864-1866
    • /
    • 1996
  • Grounding is the art of making an electrical connection to the earth. In order to protect man, electrical and/or electric equipments from the lightning strokes, all the energy of lightning strokes must be diverted via a safe path to earth. It is essential to the transient grounding resistance against lightning strokes. In this paper, measurements and analyses of grounding surge impedance have been investigated. For measurements of grounding surge impedance the pulse generator was designed and fabricated. The pulse generator has rise time of 22.4 ns and pulse duration of $8\;{\mu}s$. The transient grounding resistance has been measuring by injecting low power and step current between the earthing system under test and a remote reference earth and measuring the potential rise caused by this current. As a result, the transient grounding resistance against lightning surge in the short time domain is much higher than steady state grounding resistance.

  • PDF

Probabilistic Fracture Mechanics Analysis of Boling Water Reactor Vessel for Cool-Down and Low Temperature Over-Pressurization Transients

  • Park, Jeong Soon;Choi, Young Hwan;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.545-553
    • /
    • 2016
  • The failure probabilities of the reactor pressure vessel (RPV) for low temperature over-pressurization (LTOP) and cool-down transients are calculated in this study. For the cool-down transient, a pressure-temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME) code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition ($RT_{NDT}$). The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.

Shock Response Analysis of Rotor-Bearing System using the State-Space Newmark Method (상태공간 Newmark 기법을 이용한 로터-베어링 시스템의 충격응답 해석)

  • Lee, An-Sung;Kim, Byung-Ok;Kim, Young-Cheol;Kim, Yeong-Chun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.242-247
    • /
    • 2004
  • In this study was proposed a transient response analysis technique of a rotor system, applying the generalized FE modeling method of a rotor-bearing system considering a base-transferred shock force and together the state-space Newmark method of direct time integration scheme based on the average velocity concept. Experiments were performed to a test rig of a mock-up rotor-bearing system with series of half-sine shock waves imposed by an electromagnetic shaker, and quantitative error analyses between analytical and experimental results were carried out. The transient reponses of the rotor were sensitive to duration times and shape-qualities of the shock waves, and overally the analytical results agreed quite well with the experimental ones. Particularly, in cases that the frequencies, $1/(2{\times}duration\;time)$, of the shock waves were close to the critical speed of the rotor-bearing system, resonances occurred and the transient responses of the rotor were amplified.

  • PDF

Structural Vibration Analysis for a Composite Smart UAV Considering Dynamic Hub-loads of the Tilt-rotor (틸트로터 허브 동하중을 고려한 복합재 스마트 무인기 진동해석)

  • Kim, Dong-Hyun;Jung, Se-Un;Koo, Kyo-Nam;Kim, Sung-Jun;Kim, Sung-Chan;Lee, Ju-Young;Choi, Ik-Hyeon;Lee, Jung-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.63-71
    • /
    • 2005
  • In this study, structural vibration analyses of a composite smart unmanned aerial vehicle (UAV) have been conducted considering dynamic hub-loads of tilt-rotor. Practical computational structural dynamics technique based on the finite element method is applied using MSC/NASTRAN. The present smart UAV(TR-S2) structural model is constructed as full 3D configurations with both the helicopter flight mode and the airplane flight mode. Modal based transient response and frequency response analyses are used to efficiently investigate vibration characteristics of structure and installed electronic equipments. It is typically shown that the helicopter flight mode with the 90-deg tilting angle is the most critical case for the induced vibration of installed electronic equipments in the front.